Prediction of effective thermal conductivity of multicomponent tribocomposites taking into account contact thermal resistance between inclusions and matrix

2020 ◽  
pp. 36-40
Author(s):  
I.V. Lavrov ◽  
A.A. Kochetygov ◽  
V.V. Bardushkin ◽  
A.P. Syichev ◽  
V.B. Yakovlev

A method is proposed for predicting the effective thermal conductivity of a matrix composite with several types of spherical inclusions with contact thermal resistance at the boundary of the matrix and inclusions. The method is based on a generalized effective-field approximation for an inhomogeneous medium with inclusions with a shell. Model calculations were performed for a matrix tribocomposite with two types of inclusions. Keywords: effective thermal conductivity, contact thermal resistance, composite material, matrix, inclusion with a shell, Maxwell—Garnett approximation, generalized effective-field approximation. [email protected]

2020 ◽  
Vol 40 (8) ◽  
pp. 622-627
Author(s):  
I. V. Lavrov ◽  
A. A. Kochetygov ◽  
V. V. Bardushkin ◽  
A. P. Sychev ◽  
V. B. Yakovlev

2019 ◽  
Vol 21 (2) ◽  
pp. 101
Author(s):  
A. Dobri ◽  
T.D. Papathanasiou

This paper presents a semi-analytical model for transient heat conduction in a composite material reinforced with small spherical inclusions. Essential to the derivation of the model is the assumption that the size of the inclusions is much smaller than the length scale characterizing the macroscopic problem. An interfacial thermal resistance is also present between the two phases. During heating, the inclusions are treated as heat sinks within the matrix, with the coupling provided by the boundary conditions at the surface of the embedded particles. Application of Duhamel’s Theorem at the particle scale provides the local relationship between the temperature profile in a particle and the matrix that surrounds it. A simple spatial discretization at the macro-scale leads to an easily solvable system of coupled Ordinary Differential Equations for the matrix temperature, particle surface temperature and a series of ψ-terms related to the heat exchange between phases. The interfacial thermal resistance between the two phases can lead to the particle temperature lagging behind that of the surrounding matrix. The resulting transient response of the matrix temperature cannot be reproduced by a material with a single effective thermal conductivity. In the case where transient methods are used to determine effective thermal conductivity, this transient response may introduce errors into the measurement.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
H. M. Yin ◽  
G. H. Paulino ◽  
W. G. Buttlar ◽  
L. Z. Sun

By means of a fundamental solution for a single inhomogeneity embedded in a functionally graded material matrix, a self-consistent model is proposed to investigate the effective thermal conductivity distribution in a functionally graded particulate nanocomposite. The “Kapitza thermal resistance” along the interface between a particle and the matrix is simulated with a perfect interface but a lower thermal conductivity of the particle. The results indicate that the effective thermal conductivity distribution greatly depends on Kapitza thermal resistance, particle size, and degree of material gradient.


Author(s):  
Juekuan Yang ◽  
Scott W. Waltermire ◽  
Yang Yang ◽  
Deyu Li ◽  
Yunfei Chen

Thermal transport through carbon nanotubes (CNTs) attracted a lot of attention over the past decade. Several experimental studies have been carried out to determine the thermal conductivities of CNTs [1–3]. However, the measurements are based on an individual CNT sample between two suspended membranes and the results actually include both the intrinsic thermal resistance of the CNT and the contact thermal resistance between the CNT and the two suspended membranes that serve as a heat source and a heat sink. Hence, the effective thermal conductivity extracted from these measurements should be lower than the intrinsic thermal conductivities of the CNTs measured. To minimize the contact thermal resistance, electron beam induce deposition (EBID) of different metals has been used to increase the contact area between the CNT and the heat source and sink [3,4]. However, it is still not clear how effective this treatment is and to what level the effective thermal conductivity obtained after the EBID treatment reflects the intrinsic one.


2019 ◽  
Vol 56 (1) ◽  
pp. 256-260
Author(s):  
Gelu Coman ◽  
Gabriel-Bogdan Carp ◽  
Ion Ion ◽  
Alina Ceoromila ◽  
Nicusor Baroiu

This paper presents an experimental study on the potential use of new type of composite as insulation material. The composite material (AACW-UPR) was synthesised through mixture between the Autoclaved Aerated Concrete Waste (AACW) as filler and Unsaturated Polyester Resin (UPR) as matrix. Several samples of the composite material with different UPR concentrations (50 and 70 vol.%) and different AACW particle size (0.2-1 mm, 1.5-2.5 mm, 3-6 mm) were prepared. The thermal behaviour and the water absorption capacity of the AACW-UPR composite materials were studied. Also, the influence of water absorption capacity on thermal resistance and thermal conductivity was studied. During the investigations we noticed the following: good chemical compatibility between the AACW particles and the UPR matrix; a decrease in thermal conductivity for samples with 50 vol.% UPR and inserted particles size between 3-6 mm and an increase in water absorption capacity with the increase in the filler content in the matrix. The increasing water absorption capacity determined a decrease in thermal resistance and a reduction of the composite features as insulating material.


Author(s):  
Fabio Gori ◽  
Sandra Corasaniti ◽  
Jean-François Ciparisse

The composite is made of a matrix and a fiber-reinforced material to form a non-homogeneous anisotropic material. Thermal behaviour of composite materials is very important in many applications as heat shields and heat guides. The present paper investigates theoretically a composite material made of a silica matrix and a fiber reinforcement made of steel. The steady state effective thermal conductivity in the main directions are calculated theoretically for two extreme thermal assumptions, i.e. parallel isothermal lines and parallel heat flux lines. The effective thermal conductivity of the composite is evaluated for a variable thickness of the reinforcement, i.e. for a variable volume fraction. The anisotropy degree, defined as the ratio between the thermal conductivities along the two main directions, increases with the ratio between the thermal conductivities of the reinforcement material and the matrix. The composite material, made of two homogeneous and isotropic materials, is thermally anisotropic and can be used to drive heat towards colder regions. This phenomenon is very useful when a device, such as a spacecraft, must be thermally protected.


Author(s):  
Vladimir Khvesyuk ◽  
Aleksandr Barinov ◽  
B. Liu ◽  
W. Qiao

The paper discusses current problems related to the heat transfer in solid-state nanostructures: the influence of real rough boundaries on the effective thermal conductivity and contact thermal resistance


Sign in / Sign up

Export Citation Format

Share Document