Eco-friendly and cost-effective biodegradable films prepared via compounding polyester with thermoplastic starch

2016 ◽  
pp. 431-434
Author(s):  
Y Pan ◽  
H Wang ◽  
H Xiao
2020 ◽  
Author(s):  
Olivia López ◽  
María E. Villanueva ◽  
Guillermo J. Copello ◽  
Marcelo A Villar

Abstract Biodegradable films based on thermoplastic corn starch (TPS) and copper particles with antimicrobial capacity were developed. Copper nanoparticles (Cu) and silica coated copper microparticles (Si-Cu) in the range of 0.25 to 5 % were used. Composite films were obtained by melt-mixing and subsequent thermo-compression. Particles distribution within TPS matrix and the presence of some pores and cracks, induced by Si-Cu particles, was evaluated by SEM. The presence of both fillers gave to composite films a brown pigmentation and decreased their transparency; these effects were more pronounced at higher particles concentrations. Regarding mechanical properties, copper particles at 1 and 5 % acted as reinforcing agents increasing the maximum tensile strength but their presence lead to a decrease in elongation at break, affecting films ductility. Composites inhibited the growth of Gram+ and Gram- bacteria, demonstrating their antimicrobial capacity. Copper effectively migrated to a simulant of aqueous foods and naked particles concentration in the simulant medium resulted higher than the minimum inhibitory concentration for bacteria. The characteristics and properties of developed composite films make them an interesting material for food primary packaging, mainly for meat fresh products.


2020 ◽  
Author(s):  
Olivia López ◽  
María E. Villanueva ◽  
Guillermo J. Copello ◽  
Marcelo A Villar

Abstract Biodegradable films based on thermoplastic corn starch (TPS) and copper particles with antimicrobial capacity were developed. Copper nanoparticles (Cu) and silica coated copper microparticles (Si-Cu) in the range of 0.25 to 5 % were used. Composite films were obtained by melt-mixing and subsequent thermo-compression. Particles distribution within TPS matrix and the presence of some pores and cracks, induced by Si-Cu particles, was evaluated by SEM. The presence of both fillers gave to composite films a brown pigmentation and decreased their transparency; these effects were more pronounced at higher particles concentrations. Regarding mechanical properties, copper particles at 1 and 5 % acted as reinforcing agents increasing the maximum tensile strength but their presence lead to a decrease in elongation at break, affecting films ductility. Composites inhibited the growth of Gram+ and Gram- bacteria, demonstrating their antimicrobial capacity. Copper effectively migrated to a simulant of aqueous foods and naked particles concentration in the simulant medium resulted higher than the minimum inhibitory concentration for bacteria.The characteristics and properties of developed composite films make them an interesting material for food primary packaging, mainly for meat fresh products.


2020 ◽  
Author(s):  
Olivia López ◽  
María E. Villanueva ◽  
Guillermo J. Copello ◽  
Marcelo A Villar

Abstract Biodegradable films based on thermoplastic corn starch (TPS) and copper particles with antimicrobial capacity were developed. Copper nanoparticles (Cu) and silica coated copper microparticles (Si-Cu) in the range of 0.25 to 5 % were used. Composite films were obtained by melt-mixing and subsequent thermo-compression. Particles distribution within TPS matrix and the presence of some pores and cracks, induced by Si-Cu particles, was evaluated by SEM. The presence of both fillers gave composite films a brown pigmentation and decreased their transparency; these effects were more pronounced at higher particles concentrations. Regarding mechanical properties, copper particles at 1 and 5 % acted as reinforcing agents increasing the maximum tensile strength but their presence lead to a decrease in elongation at break, affecting films ductility. Composites inhibited the growth of Gram+ and Gram- bacteria, demonstrating their antimicrobial capacity. Copper effectively migrated to a simulant of aqueous foods and naked particles concentration in the simulant medium resulted higher than the minimum inhibitory concentration for bacteria. The characteristics and properties of developed composite films make them an interesting material for food primary packaging, mainly for meat fresh products.


2012 ◽  
Vol 488-489 ◽  
pp. 57-61
Author(s):  
Vorawan Arunyagasemsuke ◽  
Supakij Suttiruengwong ◽  
Manus Seadan

The blend of poly(butylene adipate-co-terephthalate) (PBAT) and thermoplastic starch (TPS) are a promising way to get a new class of bio-compostible plastic, balance the cost effective issue and good mechanical properties. Blends of both polymers are immiscible in nature. Therefore, to make the blend to be more compatible, some block-copolymer compatibilizer can be introduced. Reactive blend is one of effective ways to create such compatibilization at the interface. The objective of this work was to study the reactive blends of PBAT/TPS in comparison to the physical blend. The reactive blends were prepared in both an internal mixer and a twin-screw extruder. For reactive blends in twin-screw extruder, PBAT, starch, glycerol and reactive agent were all pre-mixed and blended in an extruder on one step process. The weight ratio of PBAT:TPS (starch + glycerol) was fixed at 60:40. The reactive agent maleic anhydride (MA) and peroxide (Luperox® 101) were used at very low level 0-0.1 phr. The mechanical properties, morphology and flows property of blends were characterized using tensile machine, scanning electron microscope (SEM) and melt flow indexer (MFI). The internal mixer torque showed a decrease in a final torque value of TPS when MA being added, confirming the chain scsision reaction of TPS. The finer morphogy and better mechanical properties were obtained in the reactive blend with 0.1 phr of MA and 0.1 phr of peroxide.


2022 ◽  
Vol 369 ◽  
pp. 130956 ◽  
Author(s):  
Pattarin Leelaphiwat ◽  
Chayanat Pechprankan ◽  
Paphawin Siripho ◽  
Nattinee Bumbudsanpharoke ◽  
Nathdanai Harnkarnsujarit

Author(s):  
Lawrence M. Roth

The female reproductive tract may be the site of a wide variety of benign and malignant tumors, as well as non-neoplastic tumor-like conditions, most of which can be diagnosed by light microscopic examination including special stains and more recently immunoperoxidase techniques. Nevertheless there are situations where ultrastructural examination can contribute substantially to an accurate and specific diagnosis. It is my opinion that electron microscopy can be of greatest benefit and is most cost effective when applied in conjunction with other methodologies. Thus, I have developed an approach which has proved useful for me and may have benefit for others. In cases where it is deemed of potential value, glutaraldehyde-fixed material is obtained at the time of frozen section or otherwise at operation. Coordination with the gynecologic oncologist is required in the latter situation. This material is processed and blocked and is available if a future need arises.


Sign in / Sign up

Export Citation Format

Share Document