In-plane cyclic tests on hollow clay brick masonry infills retrofitted by glass fiber mesh reinforced mortar coating

2016 ◽  
pp. 1191-1200 ◽  
Author(s):  
L. Facconi, ◽  
F. Minelli ◽  
E. Giuriani
2019 ◽  
Vol 258 ◽  
pp. 05009
Author(s):  
Maidiawati ◽  
Jafril Tanjung ◽  
Yulia Hayatfi ◽  
Hamdeni Medriosa

This paper will describe the seismic behaviour of masonry infilled RC frame with a central opening structure under reversed cyclic lateral loading. To achieve the purpose of this study, four 1/4-scale single story and single bay RC frame specimens were tested, i.e. one bare frame, one clay brick masonry infilled RC frame without opening and two clay brick masonry infills with a central opening in infills. The ratios of opening size to panel area were 25% and 40%. Through reversed cyclic lateral loading tests, the seismic performance of RC frames with a central opening brick masonry infills was investigated. As the results, significant distinctions of failure mechanism, lateral strength, stiffness, and ductility were observed between these specimens. In the case of infills with a central opening, the cracks sprouted and developed at the corners of the opening. Although the presence of the opening in infill reduces the lateral strength and stiffness overall structure, the brick infilled frames with a central opening of 25% and 40% of panel area show better seismic performance as compared to the bare frame.


2018 ◽  
Vol 32 (5) ◽  
pp. 04018058 ◽  
Author(s):  
Alper Aldemir ◽  
Baris Binici ◽  
Erdem Canbay ◽  
Ahmet Yakut

2020 ◽  
Vol 156 ◽  
pp. 05014
Author(s):  
Jafril Tanjung ◽  
Maidiawati

This study focuses on the experimental works to define the behavior of the reinforced concrete (R/C) frame model with the strengthening of the brick masonry infill by using the embedded reinforcement bars subjected to lateral reversed cyclic loads. A previous study by applying the lateral monotonic static loads showed that the embedded reinforcement bars increased the lateral capacity of the R/C frame and also delayed the failure of the brick masonry infill and R/C frame structure as well. However, in order to define its seismic capacity, a lateral reversed cyclic loading is required. The experimental works in this study were conducted by preparing and testing the 1/4 scaled-down R/C frame specimens represented the first story of the middle multi-story commonly constructed in the earthquake-prone area such as West Sumatera, Indonesia. The R/C frame specimens were two R/C frames with brick masonry infills where one of them strengthened by the embedded reinforced bars. All specimens were tested for applying the lateral reversed cyclic loads. The applied lateral load, the lateral displacement, the progressive cracks, and the failure mode of the specimens were observed and recorded during experimental works. As it was expected, the presence of the embedded reinforced bars in the brick masonry infills increases the seismic capacity and stiffness of the R/C specimens and also delayed the failure of the specimens. The experimental results in this study imply the simple strengthening method for the brick masonry infills.


2019 ◽  
Vol 14 (51) ◽  
pp. 288-312
Author(s):  
Giancarlo Ramaglia ◽  
Gian Piero Lignola ◽  
Andrea Prota

2018 ◽  
Vol 16 (7) ◽  
pp. 3127-3152 ◽  
Author(s):  
Cristián Sandoval ◽  
Sebastián Calderón ◽  
José Luis Almazán

Sign in / Sign up

Export Citation Format

Share Document