Experimental assessment of the mechanical behaviour of ties on brick veneers anchored to brick masonry infills

2017 ◽  
Vol 156 ◽  
pp. 515-531 ◽  
Author(s):  
A. Martins ◽  
G. Vasconcelos ◽  
A.C. Costa
2015 ◽  
Vol 80 ◽  
pp. 328-342 ◽  
Author(s):  
A. Martins ◽  
G. Vasconcelos ◽  
R. Fangueiro ◽  
F. Cunha

2020 ◽  
Vol 156 ◽  
pp. 05014
Author(s):  
Jafril Tanjung ◽  
Maidiawati

This study focuses on the experimental works to define the behavior of the reinforced concrete (R/C) frame model with the strengthening of the brick masonry infill by using the embedded reinforcement bars subjected to lateral reversed cyclic loads. A previous study by applying the lateral monotonic static loads showed that the embedded reinforcement bars increased the lateral capacity of the R/C frame and also delayed the failure of the brick masonry infill and R/C frame structure as well. However, in order to define its seismic capacity, a lateral reversed cyclic loading is required. The experimental works in this study were conducted by preparing and testing the 1/4 scaled-down R/C frame specimens represented the first story of the middle multi-story commonly constructed in the earthquake-prone area such as West Sumatera, Indonesia. The R/C frame specimens were two R/C frames with brick masonry infills where one of them strengthened by the embedded reinforced bars. All specimens were tested for applying the lateral reversed cyclic loads. The applied lateral load, the lateral displacement, the progressive cracks, and the failure mode of the specimens were observed and recorded during experimental works. As it was expected, the presence of the embedded reinforced bars in the brick masonry infills increases the seismic capacity and stiffness of the R/C specimens and also delayed the failure of the specimens. The experimental results in this study imply the simple strengthening method for the brick masonry infills.


2019 ◽  
Vol 258 ◽  
pp. 05009
Author(s):  
Maidiawati ◽  
Jafril Tanjung ◽  
Yulia Hayatfi ◽  
Hamdeni Medriosa

This paper will describe the seismic behaviour of masonry infilled RC frame with a central opening structure under reversed cyclic lateral loading. To achieve the purpose of this study, four 1/4-scale single story and single bay RC frame specimens were tested, i.e. one bare frame, one clay brick masonry infilled RC frame without opening and two clay brick masonry infills with a central opening in infills. The ratios of opening size to panel area were 25% and 40%. Through reversed cyclic lateral loading tests, the seismic performance of RC frames with a central opening brick masonry infills was investigated. As the results, significant distinctions of failure mechanism, lateral strength, stiffness, and ductility were observed between these specimens. In the case of infills with a central opening, the cracks sprouted and developed at the corners of the opening. Although the presence of the opening in infill reduces the lateral strength and stiffness overall structure, the brick infilled frames with a central opening of 25% and 40% of panel area show better seismic performance as compared to the bare frame.


2016 ◽  
Vol 32 (3) ◽  
pp. 1653-1674 ◽  
Author(s):  
Supratik Bose ◽  
Durgesh C. Rai

Autoclaved aerated concrete (AAC) masonry infills in upper stories can be beneficial for improving the seismic response of open-ground-story (OGS), reinforced concrete (RC)–frame buildings. Two reduced 1:2.5-scale models of single-story, single-bay RC frames with and without AAC infill masonry were tested for resistance properties and hysteretic behavior. Low strength and stiffness of AAC masonry, about half of the conventional brick masonry, led to improved load sharing between the infill and the frame, which helped an early development of frame yield mechanism for enhanced energy dissipation. Test results were used to evaluate the reliability of using existing strength and stiffness relations of conventional masonry infilled RC frames for AAC infilled frames. Analytical models were developed to predict the observed hysteretic behavior of tested specimens. Nonlinear analyses of a five-story, four-bay OGS-RC frame were performed for conventional brick masonry infills and relatively softer and weaker AAC infills in upper stories. The results indicated that the undesirable effect of weak/soft ground story mechanism of OGS-RC frames can be reduced to an acceptable level by using AAC infills in upper stories.


Sign in / Sign up

Export Citation Format

Share Document