scholarly journals Comparison of Two Parameters Models for clay brick masonry confinement

2019 ◽  
Vol 14 (51) ◽  
pp. 288-312
Author(s):  
Giancarlo Ramaglia ◽  
Gian Piero Lignola ◽  
Andrea Prota
2019 ◽  
Vol 17 (05) ◽  
pp. 1940010
Author(s):  
Giancarlo Ramaglia ◽  
Francesco Russo Spena ◽  
Gian Piero Lignola ◽  
Andrea Prota

Modeling of masonry confinement has been usually derived from concrete confinement, which was deeply tested in the last decades. However concrete and masonry have some crucial differences, e.g., ordinary concrete performance can be usually fully defined by the cylindrical compressive strength, while masonry does not. In the present work, a failure criterion is considered on a solid mechanics base. Such criteria are useful not only to introduce non-uniform stress states, as those developed in non-axisymmetric confined elements, but also to be implemented in FEM. The validity of the adopted failure criterion has been checked against actively confined clay brick masonry and a database of passive confinement tests available in the scientific literature.


2018 ◽  
Vol 32 (5) ◽  
pp. 04018058 ◽  
Author(s):  
Alper Aldemir ◽  
Baris Binici ◽  
Erdem Canbay ◽  
Ahmet Yakut

2018 ◽  
Vol 16 (7) ◽  
pp. 3127-3152 ◽  
Author(s):  
Cristián Sandoval ◽  
Sebastián Calderón ◽  
José Luis Almazán

2017 ◽  
Vol 747 ◽  
pp. 542-549
Author(s):  
Marianovella Leone ◽  
Valeria Rizzo ◽  
Francesco Micelli ◽  
Maria Antonietta Aiello

External bonded reinforcements (EBR), made by fibrous meshes embedded in a cementitious/hydraulic lime mortar, are getting a great deal of attention, mostly for strengthening, retrofitting and repair existing structures. In this context, the interest versus the FRCM (Fiber Reinforced Cementitious Matrix) is growing. The mechanical performance of these mortar-based reinforcements is not well known at the date and it needs to be investigated in terms of bond and tensile strength, strain and stiffness, in relation to the type of both substrate and fibers. The present work reports the results of an experimental study, still in progress, on different pre-cured GFRP grids embedded in inorganic matrices and applied on clay brick masonry. First, the mechanical properties of both pre-cured GFRP grid and GFRCM reinforcements were obtained through tensile tests. Then, the experimental investigation on bond behavior was carried out by direct shear bond test. The test results were collected and processed to evaluate bond strength, failure mode, load-slip relationship.


2009 ◽  
Vol 31 (11) ◽  
pp. 2580-2587 ◽  
Author(s):  
C.R. Willis ◽  
Q. Yang ◽  
R. Seracino ◽  
M.C. Griffith

2018 ◽  
Vol 215 ◽  
pp. 01034 ◽  
Author(s):  
Muhammad Ridwan ◽  
Ruddy Kurniawan ◽  
Agus

In principle, the main construction of the non-engineered building in Indonesia is the wooden structure. It can be seen from traditional houses in Indonesia. However, In the last two centuries, the use of brick masonry as wall component has been becoming the primary material. Another side, some places in Indonesia are the seismic areas and earthquake-prone areas. Learning from the earthquake that has happened in the last ten years, the building that used clay brick for masonry wall mostly suffered damage and destruction when subjected to a relatively high intensity of the earthquake. This paper used data from several places and some references. There have significant differences in the mechanical properties of the bricks. Generally, Indonesian bricks masonry have limited capability and substantial differences in the mechanical properties when compared to another country bricks. By the considering, the Indonesian bricks masonry that has low mechanical properties, so that it is proposed to use brick masonry to non-seismic only. It should be considered to use clay brick as the main component of the wall for a particular region in Indonesia. Next, the zoning of allowed masonry structure in Indonesia is proposed.


Sign in / Sign up

Export Citation Format

Share Document