Numerical investigation of the mechanical behaviour of single energy piles and energy pile groups

2016 ◽  
pp. 569-575 ◽  
Author(s):  
C Tsetoulidis ◽  
A Naskos ◽  
K Georgiadis
2018 ◽  
Vol 19 (8) ◽  
pp. 638-649 ◽  
Author(s):  
Huai-feng Peng ◽  
Gang-qiang Kong ◽  
Han-long Liu ◽  
Hossam Abuel-Naga ◽  
Yao-hu Hao

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Qingwen Li ◽  
Lu Chen ◽  
Lan Qiao

Energy pile is one of the promising areas in the burgeoning green power technology; it is gradually gaining attention and will have wide applications in the future. Because of its specific structure, the energy pile has the functions of both a structural element and a heat exchanger. However, most researchers have been paying attention to only the heat transfer process and its efficiency. Very few studies have been done on the structural interaction between the energy pile and its host soil. As the behavior of the host soil is complicated and uncertain, thermal stresses appear with inhomogeneous distribution along the pile, and the peak value and distribution of stress will be affected by the thermal and physical properties and thermal conductivities of the structure and the host soil. In view of the above, it is important to determine thermal-mechanical coupled behavior under these conditions. In this study, a comprehensive method using theoretical derivations and numerical simulation was adopted to analyze the structural interaction between the energy pile and its host soil. The results of this study could provide technical guidance for the construction of energy piles.


2020 ◽  
Vol 57 (11) ◽  
pp. 1754-1766
Author(s):  
Rehab Elzeiny ◽  
Muhannad T. Suleiman ◽  
Suguang Xiao ◽  
Mu’ath Abu Qamar ◽  
Mohammed Al-Khawaja

Ground source heat pumps coupled with energy piles operate intermittently, subjecting the piles to temperature cycles throughout their lifetime. The research presented in this paper focuses on studying the thermomechanical behavior of energy piles subjected to heating cycles. Laboratory model tests were performed at the soil-structure interaction (SSI) facility at Lehigh University. A fully instrumented model energy pile, embedded in dry sand, was subjected to different number of heating cycles followed by axial pull-out loading. Baseline (room temperature), five heating cycles (5HC), and 100 heating cycles (100HC) tests are reported in this paper. The soil was instrumented with temperature sensors and pressure sensors, while the pile was instrumented with temperature sensors, strain gauges, and pressure sensors. The test results showed that the peak pull-out loads for the baseline, 5HC, and 100HC were 2794 N, 3633 N (30% higher than baseline), and 3559 N (27% higher than baseline), respectively. It was also found that subjecting the pile to large number of daily heating cycles induced small degradation in the load transfer or the peak pull-out load in dry sand.


2020 ◽  
Vol 146 (9) ◽  
pp. 04020079
Author(s):  
Jincheng Fang ◽  
Gangqiang Kong ◽  
Yongdong Meng ◽  
Lehua Wang ◽  
Qing Yang

Géotechnique ◽  
2017 ◽  
Vol 67 (8) ◽  
pp. 691-702 ◽  
Author(s):  
A. F. Rotta Loria ◽  
L. Laloui
Keyword(s):  

2020 ◽  
Vol 205 ◽  
pp. 05026
Author(s):  
Jun Yang ◽  
Zhenguo Yan ◽  
Zhengwei Zhang ◽  
Shu Zeng

With the ever-increasing energy demand and implications of climate change, the use of energy piles to absorb shallow geothermal energy to regulate room temperature of buildings is considered the best sustainable energy technology, especially in China, and the use of this technology is becoming increasingly popular. At present, studies generally uses the temperature field to analyze the heat transfer performance of the energy pile, which cannot represent the heat transfer rate distribution intuitively. In this study, we used mathematical models to provide an analytical solution to determine the heat transfer rate distribution between the energy pile and surrounding soil. Analysis of the heat transfer process of concrete piles in clay showed that the difference in thermal properties between the energy pile and the surrounding soil affected the whole heat transfer process, especially in the initial stage. The time required to reach the quasi-steady state mainly depended on the pile’s volume heat capacity, the thermal diffusivity of the pile and the surrounding soil. In engineering practice, to enhance the heat transfer performance of energy piles, the following measures can be taken: reduce the difference in thermal properties between the energy pile and surrounding soil and increase the distance between energy piles to improve the heat transfer conditions.


Sign in / Sign up

Export Citation Format

Share Document