scholarly journals Experimental Biology of Cerebral Hypoxia-Ischemia: Relation to Perinatal Brain Damage

1990 ◽  
Vol 27 (4) ◽  
pp. 317-326 ◽  
Author(s):  
Robert C Vannucci
2007 ◽  
Vol 14 (7) ◽  
pp. 667-677 ◽  
Author(s):  
Evangelia Spandou ◽  
Vassiliki Soubasi ◽  
Stamatia Papoutsopoulou ◽  
Persefoni Augoustides-Savvopoulou ◽  
Theodoros Loizidis ◽  
...  

Neonatology ◽  
1997 ◽  
Vol 72 (3) ◽  
pp. 187-191 ◽  
Author(s):  
Robert C. Vannucci ◽  
Anthony Rossini ◽  
Javad Towfighi ◽  
Susan J. Vannucci

1990 ◽  
Vol 10 (2) ◽  
pp. 227-235 ◽  
Author(s):  
Charles Palmer ◽  
Robert M. Brucklacher ◽  
Melanie A. Christensen ◽  
Robert C. Vannucci

The brain damage that evolves from perinatal cerebral hypoxia-ischemia may involve lingering disturbances in metabolic activity that proceed into the recovery period. To clarify this issue, we determined the carbohydrate and energy status of cerebral tissue using enzymatic, fluorometric techniques in an experimental model of perinatal hypoxic-ischemic brain damage. Seven-day postnatal rats were subjected to unilateral common carotid artery ligation followed by 3 h of hypoxia with 8% oxygen at 37°C. This insult is known to produce tissue injury (selective neuronal necrosis or infarction) predominantly in the cerebral hemisphere ipsilateral to the carotid artery occlusion in 92% of the animals. Rat pups were quick-frozen in liquid nitrogen at 0, 1, 4, 12, 24, or 72 h of recovery; littermate controls underwent neither ligation nor hypoxia. Glucose in both cerebral hemispheres was nearly completely exhausted during hypoxia-ischemia, with concurrent increases in lactate to 10 mmol/kg. During recovery, glucose promptly increased above control values, suggesting an inhibition of glycolytic flux, as documented in the ipsilateral cerebral hemisphere by measurement of glucose utilization (CMRglc) at 24 h. Tissue lactate declined rapidly during recovery but remained slightly elevated in the ipsilateral hemisphere for 12 h. Phosphocreatine (P∼Cr) and ATP in the ipsilateral cerebral hemisphere were 14 and 26% of control (p < 0.001) at the end of hypoxia-ischemia; total adenine nucleotides (ATP + ADP + AMP) also were partially depleted (–46%). During the first hour of recovery, mean P∼Cr was replenished to within 90% of baseline, whereas mean ATP was incompletely restored to 68–81% of control (p < 0.05). Individual ATP and total adenine nucleotide values were >2 SD below control levels in 17/24 (71%) brains at all intervals of recovery. Both ATP and total adenine nucleotides were inversely correlated with tissue water content, reflecting the extent of cerebral edema. No major alterations in the high-energy phosphate reserves occurred in the contralateral cerebral hemisphere either during or following hypoxia-ischemia. Thus, following perinatal cerebral hypoxia-ischemia, ATP and total adenine nucleotides never recover completely in brains undergoing damage but rather are permanently depleted to levels that reflect the severity of tissue injury. Recovery of P∼Cr to near normal levels can occur despite evolving brain damage. The findings have relevance to the assessment of asphyxiated newborn humans using magnetic resonance spectroscopy.


2004 ◽  
Vol 24 (10) ◽  
pp. 1090-1097 ◽  
Author(s):  
Robert C. Vannucci ◽  
Javad Towfighi ◽  
Susan J. Vannucci

A delayed or secondary energy failure occurs during recovery from perinatal cerebral hypoxia–ischemia. The question remains as to whether the energy failure causes or accentuates the ultimate brain damage or is a consequence of cell death. To resolve the issue, 7-day postnatal rats underwent unilateral common carotid artery occlusion followed thereafter by systemic hypoxia with 8% oxygen for 2.5 hours. During recovery, the brains were quick frozen and individually processed for histology and the measurements of 1) high-energy phosphate reserves and 2) neuronal (MAP-2, SNAP-25) and glial (GFAP) proteins. Phosphocreatine (PCr) and ATP, initially depleted during hypoxia–ischemia, were partially restored during the first 18 hours of recovery, with secondary depletions at 24 and 48 hours. During the initial recovery phase (6 to 18 hours), there was a significant correlation between PCr and the histology score (0 to 3), but not for ATP. During the late recovery phase, there was a highly significant correlation between all measured metabolites and the damage score. Significant correlation also exhibited between the neuronal protein markers, MAP-2 and SNAP-25, and PCr as well as the sum of PCr and Cr at both phases of recovery. No correlation existed between the high-energy reserves and the glial protein marker, GFAP. The close correspondence of PCr to histologic brain damage and the loss of MAP-2 and SNAP-25 during both the early and late recovery intervals suggest evolving cellular destruction as the primary event, which precedes and leads to the secondary energy failure.


1992 ◽  
Vol 262 (3) ◽  
pp. H672-H677 ◽  
Author(s):  
J. Y. Yager ◽  
R. M. Brucklacher ◽  
R. C. Vannucci

Persistent alterations in cellular energy homeostasis may contribute to the brain damage that evolves from perinatal cerebral hypoxia-ischemia. Accordingly, the presence and extent of perturbations in high-energy phosphate reserves were analyzed during hypoxia-ischemia and the early recovery period in the immature rat. Seven-day postnatal rats were subjected to unilateral common carotid artery ligation and hypoxia with 8% oxygen at 37 degrees C for 3 h, an insult that produces damage (selective neuronal necrosis or infarction) of the cerebral hemisphere ipsilateral to the common carotid artery ligation in 92% of animals. Rat pups were quick frozen in liquid nitrogen during hypoxia-ischemia and at 10, 30, and 60 min and 4 and 24 h of recovery for enzymatic, fluorometric analysis of phosphocreatine (PCr), creatine, ATP, ADP, and AMP. During hypoxia-ischemia, PCr, ATP, and total adenine nucleotides were decreased by 87, 72, and 50% of control, respectively. During recovery, PCr, ATP, and total adenine nucleotides exhibited a rapid (within 10 min) although incomplete and heterogeneous recovery that persisted for at least 24 h. Mean values for PCr remained between 55 and 85% of control, whereas ATP values remained between 57 and 67% of control. Individual ATP values were inversely related to tissue water content at 10 min of recovery, indicating a close correlation between failure of energy restoration and the extent of cerebral edema as a reflection of brain damage. Thus high-energy phosphate reserves display lingering alterations during recovery from hypoxia-ischemia. The interanimal variability in energy restoration presumably reflects the spectrum of brain damage seen in this model of perinatal cerebral hypoxia-ischemia.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107192 ◽  
Author(s):  
Cuicui Xie ◽  
Kai Zhou ◽  
Xiaoyang Wang ◽  
Klas Blomgren ◽  
Changlian Zhu

Author(s):  
Arne Jensen ◽  
Yves Garnier ◽  
Johannes Middelanis ◽  
Richard Berger

2007 ◽  
Vol 412 (2) ◽  
pp. 114-117 ◽  
Author(s):  
John C. Ashton ◽  
Rosanna M.A. Rahman ◽  
Shiva M. Nair ◽  
Brad A. Sutherland ◽  
Michelle Glass ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document