scholarly journals MEAN AIRWAY PRESSURE (MAP) DURING HIGH FREQUENCY FLOW INTERRUPTION (HFFI).1979

1996 ◽  
Vol 39 ◽  
pp. 332-332
Author(s):  
Wil Geven ◽  
Dianne Visser ◽  
Jeroen Hopman ◽  
Desiree Cremers ◽  
Margot van de Bor
1998 ◽  
Vol 84 (5) ◽  
pp. 1520-1527 ◽  
Author(s):  
Ulrich Thome ◽  
Frank Pohlandt

In high-frequency oscillatory ventilation (HFOV), an adequate mean airway pressure is crucial for successful ventilation and optimal gas exchange, but air trapping cannot be detected by the usual measurement at the y piece. Intratracheal pressures produced by the high-frequency oscillators HFV-Infantstar (IS), Babylog 8000 (BL), and the SensorMedics 3100A (SM) [the latter with either 30% (SM30) or 50% (SM50) inspiratory time] were investigated in four anesthetized tracheotomized female piglets that were 1 day old and weighed 1.6–1.9 kg (mean 1.76 kg). The endotracheal tube was repeatedly clamped while the piglets were ventilated with an oscillation frequency of 10 Hz, and the airway pressure distal of the clamp was recorded as a measure of average intrapulmonary pressure during oscillation. Clamping resulted in a significant decrease of mean airway pressure when the piglets were ventilated with SM30(−0.86 cmH2O), BL (−0.66 cmH2O), and IS (−0.71 cmH2O), but airway pressure increased by a mean of 0.76 cmH2O with SM50. Intratracheal pressure, when measured by a catheter pressure transducer at various oscillation frequencies, was lower than at the y piece by 0.4–0.9 cmH2O (SM30), 0.3–3 cmH2O (BL), and 1–4.7 cmH2O (IS) but was 0.4–0.7 cmH2O higher with SM50. We conclude that the inspiratory-to-expiratory time (Ti/Te) ratio influences the intratracheal and intrapulmonary pressures in HFOV and may sustain a mean pressure gradient between the y piece and the trachea. A Ti/Te ratio < 1:1 may be useful to avoid air trapping when HFOV is used.


2003 ◽  
Vol 99 (6) ◽  
pp. 1313-1322 ◽  
Author(s):  
Thomas Luecke ◽  
Juergen P. Meinhardt ◽  
Peter Herrmann ◽  
Gerald Weisser ◽  
Paolo Pelosi ◽  
...  

Background Numerous studies suggest setting positive end-expiratory pressure during conventional ventilation according to the static pressure-volume (P-V) curve, whereas data on how to adjust mean airway pressure (P(aw)) during high-frequency oscillatory ventilation (HFOV) are still scarce. The aims of the current study were to (1) examine the respiratory and hemodynamic effects of setting P(aw) during HFOV according to the static P-V curve, (2) assess the effect of increasing and decreasing P(aw) on slice volumes and aeration patterns at the lung apex and base using computed tomography, and (3) study the suitability of the P-V curve to set P(aw) by comparing computed tomography findings during HFOV with those obtained during recording of the static P-V curve at comparable pressures. Methods Saline lung lavage was performed in seven adult pigs. P-V curves were obtained with computed tomography scanning at each volume step at the lung apex and base. The lower inflection point (Pflex) was determined, and HFOV was started with P(aw) set at Pflex. The pigs were provided five 1-h cycles of HFOV. P(aw), first set at Pflex, was increased to 1.5 times Pflex (termed 1.5 Pflex(inc)) and 2 Pflex and decreased thereafter to 1.5 times Pflex and Pflex (termed 1.5 Pflex(dec) and Pflex(dec)). Hourly measurements of respiratory and hemodynamic variables as well as computed tomography scans at the apex and base were made. Results High-frequency oscillatory ventilation at a P(aw) of 1.5 Pflex(inc) reestablished preinjury arterial oxygen tension values. Further increase in P(aw) did not change oxygenation, but it decreased oxygen delivery as a result of decreased cardiac output. No differences in respiratory or hemodynamic variables were observed when comparing HFOV at corresponding P(aw) during increasing and decreasing P(aw). Variation in total slice lung volume (TLVs) was far less than expected from the static P-V curve. Overdistended lung volume was constant and less than 3% of TLVs. TLVs values during HFOV at Pflex, 1.5 Pflex(inc), and 2 Pflex were significantly greater than TLVs values at corresponding tracheal pressures on the inflation limb of the static P-V curve and located near the deflation limb. In contrast, TLVs values during HFOV at decreasing P(aw) (i.e., 1.5 Pflex(dec) and Pflex(dec)) were not significantly greater than corresponding TLV on the deflation limb of the static P-V curves. The marked hysteresis observed during static P-V curve recordings was absent during HFOV. Conclusions High-frequency oscillatory ventilation using P(aw) set according to a static P-V curve results in effective lung recruitment, and slice lung volumes during HFOV are equal to those from the deflation limb of the static P-V curve at equivalent pressures.


1986 ◽  
Vol 61 (5) ◽  
pp. 1896-1902 ◽  
Author(s):  
Y. Yamada ◽  
J. G. Venegas ◽  
D. J. Strieder ◽  
C. A. Hales

In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025–1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.


1987 ◽  
Vol 63 (6) ◽  
pp. 2216-2222 ◽  
Author(s):  
J. J. Rouby ◽  
M. Houissa ◽  
J. F. Brichant ◽  
J. F. Baron ◽  
C. McMillan ◽  
...  

Fifteen anesthetized mechanically ventilated patients recovering from multiple trauma were studied to compare the effects of high-frequency jet ventilation (HFJV) and continuous positive-pressure ventilation (CPPV) on arterial baroreflex regulation of heart rate. Systolic arterial pressure and right atrial pressure were measured using indwelling catheters. Electrocardiogram (ECG) and mean airway pressure were continuously monitored. Lung volumes were measured using two linear differential transformers mounted on thoracic and abdominal belts. Baroreflex testing was performed by sequential intravenous bolus injections of phenylephrine (200 micrograms) and nitroglycerin (200 micrograms) to raise or lower systolic arterial pressure by 20–30 Torr. Baroreflex regulation of heart rate was expressed as the slope of the regression line between R-R interval of the ECG and systolic arterial pressure. In each mode of ventilation the ventilatory settings were chosen to control mean airway pressure and arterial PCO2 (PaCO2). In HFJV a tidal volume of 159 +/- 61 ml was administered at a frequency of 320 +/- 104 breaths/min, whereas in CPPV a tidal volume of 702 +/- 201 ml was administered at a frequency of 13 +/- 2 breaths/min. Control values of systolic arterial pressure, R-R interval, mean pulmonary volume above apneic functional residual capacity, end-expiratory pulmonary volume, right atrial pressure, mean airway pressure, PaCO2, pH, PaO2, and temperature before injection of phenylephrine or nitroglycerin were comparable in HFJV and CPPV. Baroreflex regulation of heart rate after nitroglycerin injection was significantly higher in HFJV (4.1 +/- 2.8 ms/Torr) than in CPPV (1.96 +/- 1.23 ms/Torr).(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 70 (2) ◽  
pp. 701-707 ◽  
Author(s):  
B. R. Boynton ◽  
D. Villanueva ◽  
M. D. Hammond ◽  
P. N. Vreeland ◽  
B. Buckley ◽  
...  

We studied the effect of mean airway pressure (Paw) on gas exchange during high-frequency oscillatory ventilation in 14 adult rabbits before and after pulmonary saline lavage. Sinusoidal volume changes were delivered through a tracheostomy at 16 Hz, a tidal volume of 1 or 2 ml/kg, and inspired O2 fraction of 0.5. Arterial PO2 and PCO2 (PaO2, PaCO2), lung volume change, and venous admixture were measured at Paw from 5 to 25 cmH2O after either deflation from total lung capacity or inflation from relaxation volume (Vr). The rabbits were lavaged with saline until PaO2 was less than 70 Torr, and all measurements were repeated. Lung volume change was measured in a pressure plethysmograph. Raising Paw from 5 to 25 cmH2O increased lung volume by 48-50 ml above Vr in both healthy and lavaged rabbits. Before lavage, PaO2 was relatively insensitive to changes in Paw, but after lavage PaO2 increased with Paw from 42.8 +/- 7.8 to 137.3 +/- 18.3 (SE) Torr (P less than 0.001). PaCO2 was insensitive to Paw change before and after lavage. At each Paw after lavage, lung volume was larger, venous admixture smaller, and PaO2 higher after deflation from total lung capacity than after inflation from Vr. This study shows that the effect of increased Paw on PaO2 is mediated through an increase in lung volume. In saline-lavaged lungs, equal distending pressures do not necessarily imply equal lung volumes and thus do not imply equal PaO2.


Sign in / Sign up

Export Citation Format

Share Document