Customer Demand Forecasting via Support Vector Regression Analysis

2005 ◽  
Vol 83 (8) ◽  
pp. 1009-1018 ◽  
Author(s):  
A.A. Levis ◽  
L.G. Papageorgiou
Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1166
Author(s):  
Bashir Musa ◽  
Nasser Yimen ◽  
Sani Isah Abba ◽  
Humphrey Hugh Adun ◽  
Mustafa Dagbasi

The prediction accuracy of support vector regression (SVR) is highly influenced by a kernel function. However, its performance suffers on large datasets, and this could be attributed to the computational limitations of kernel learning. To tackle this problem, this paper combines SVR with the emerging Harris hawks optimization (HHO) and particle swarm optimization (PSO) algorithms to form two hybrid SVR algorithms, SVR-HHO and SVR-PSO. Both the two proposed algorithms and traditional SVR were applied to load forecasting in four different states of Nigeria. The correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used as indicators to evaluate the prediction accuracy of the algorithms. The results reveal that there is an increase in performance for both SVR-HHO and SVR-PSO over traditional SVR. SVR-HHO has the highest R2 values of 0.9951, 0.8963, 0.9951, and 0.9313, the lowest MSE values of 0.0002, 0.0070, 0.0002, and 0.0080, and the lowest MAPE values of 0.1311, 0.1452, 0.0599, and 0.1817, respectively, for Kano, Abuja, Niger, and Lagos State. The results of SVR-HHO also prove more advantageous over SVR-PSO in all the states concerning load forecasting skills. This paper also designed a hybrid renewable energy system (HRES) that consists of solar photovoltaic (PV) panels, wind turbines, and batteries. As inputs, the system used solar radiation, temperature, wind speed, and the predicted load demands by SVR-HHO in all the states. The system was optimized by using the PSO algorithm to obtain the optimal configuration of the HRES that will satisfy all constraints at the minimum cost.


2012 ◽  
pp. 1551-1565 ◽  
Author(s):  
Nicholas Ampazis

Estimating customer demand in a multi-level supply chain structure is crucial for companies seeking to maintain their competitive advantage within an uncertain business environment. This work explores the potential of computational intelligence approaches as forecasting mechanisms for predicting customer demand at the first level of organization of a supply chain where products are presented and sold to customers. The computational intelligence approaches that we utilize are Artificial Neural Networks (ANNs), trained with the OLMAM algorithm (Optimized Levenberg-Marquardt with Adaptive Momentum), and Support Vector Machines (SVMs) for regression. The effectiveness of the proposed approach was evaluated using public data from the Netflix movie rental online DVD store in order to predict the demand for movie rentals during the critical, for sales, Christmas holiday season.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zeynep Hilal Kilimci ◽  
A. Okay Akyuz ◽  
Mitat Uysal ◽  
Selim Akyokus ◽  
M. Ozan Uysal ◽  
...  

Demand forecasting is one of the main issues of supply chains. It aimed to optimize stocks, reduce costs, and increase sales, profit, and customer loyalty. For this purpose, historical data can be analyzed to improve demand forecasting by using various methods like machine learning techniques, time series analysis, and deep learning models. In this work, an intelligent demand forecasting system is developed. This improved model is based on the analysis and interpretation of the historical data by using different forecasting methods which include time series analysis techniques, support vector regression algorithm, and deep learning models. To the best of our knowledge, this is the first study to blend the deep learning methodology, support vector regression algorithm, and different time series analysis models by a novel decision integration strategy for demand forecasting approach. The other novelty of this work is the adaptation of boosting ensemble strategy to demand forecasting system by implementing a novel decision integration model. The developed system is applied and tested on real life data obtained from SOK Market in Turkey which operates as a fast-growing company with 6700 stores, 1500 products, and 23 distribution centers. A wide range of comparative and extensive experiments demonstrate that the proposed demand forecasting system exhibits noteworthy results compared to the state-of-art studies. Unlike the state-of-art studies, inclusion of support vector regression, deep learning model, and a novel integration strategy to the proposed forecasting system ensures significant accuracy improvement.


2019 ◽  
Vol 18 (11) ◽  
pp. 2287-2291 ◽  
Author(s):  
Daniel Rodriguez Prado ◽  
Jesus Alberto Lopez-Fernandez ◽  
Manuel Arrebola ◽  
Marcos Rodriguez Pino ◽  
George Goussetis

Author(s):  
Nicholas Ampazis

Estimating customer demand in a multi-level supply chain structure is crucial for companies seeking to maintain their competitive advantage within an uncertain business environment. This work explores the potential of computational intelligence approaches as forecasting mechanisms for predicting customer demand at the first level of organization of a supply chain where products are presented and sold to customers. The computational intelligence approaches that we utilize are Artificial Neural Networks (ANNs), trained with the OLMAM algorithm (Optimized Levenberg-Marquardt with Adaptive Momentum), and Support Vector Machines (SVMs) for regression. The effectiveness of the proposed approach was evaluated using public data from the Netflix movie rental online DVD store in order to predict the demand for movie rentals during the critical, for sales, Christmas holiday season.


Sign in / Sign up

Export Citation Format

Share Document