scholarly journals Use of Polyvinyl Alcohol as a Solubility Enhancing Polymer for Poorly Water-Soluble Drug Delivery (Part 2)

2016 ◽  
Vol 17 (1) ◽  
pp. 180-190 ◽  
Author(s):  
Chris Brough ◽  
Dave A. Miller ◽  
Daniel Ellenberger ◽  
Dieter Lubda ◽  
Robert O. Williams
2015 ◽  
Vol 17 (1) ◽  
pp. 167-179 ◽  
Author(s):  
Chris Brough ◽  
Dave A. Miller ◽  
Justin M. Keen ◽  
Shawn A. Kucera ◽  
Dieter Lubda ◽  
...  

Author(s):  
HRISHAV DAS PURKAYASTHA ◽  
S. K. IMANUR HOSSIAN

Nanosuspension consists of the pure poorly water-soluble drug without any matrix material suspended in dispersion. The formulation as nanosuspension is an attractive and promising alternative to solve these problems. Nanosuspension technology solved the problem of drugs which are poorly aqueous soluble and less bioavailability. Stability and bioavailability of the drugs can be improved by Nanosuspension technology. Nanosuspensions are promising candidates that can be used for enhancing the dissolution of poorly water-soluble drugs. Preparation of Nanosuspension is simple and applicable to all drugs which are aqueous insoluble. Nanosuspensions are prepared by using wet mill, high-pressure homogenizer, emulsion‐solvent evaporation, melt emulsification method and supercritical fluid techniques. Nanosuspension can be prepared by using stabilizers, organic solvents and other additives such as buffers, salts, polyols, osmogent and cryoprotectant. Nanosuspensions can be delivered by oral,parenteral, pulmonary and ocular routes. Nanosuspensions can also be used for targeted drug delivery when incorporated in the ocular inserts and mucoadhesive hydrogels.


Author(s):  
Mahalaxmi K ◽  
Sailu Ch

The aim of study was to develop self-nanoemulsifying systems of poorly water-soluble drug repaglinide, which is an antidiabetic drug in the class of medications known as meglitinides. Solubility of repaglinide in oily phases and surfactants was determined to identify components of self-nanoemulsifying drug delivery system (SNEDDS). Surfactants and oil was selected based on solubility studies were further screened for their efficiency in formulation. Acrysol K 150, Kolliphor EL and Capmul MCM were selected as oil, surfactant and co-surfactant respectively. Formulation F8 was found to be optimized formulation on the basis of in vitro dissolution studies, particle size and zeta potential. The optimized formulation was then subjected to stability studies and was found to be stable after 6 months. Thus, SNEDDS were found to be influential in improving the release performance of repaglinide, indicating their potential to improve the solubility and oral bioavailability of repaglinide.  


Sign in / Sign up

Export Citation Format

Share Document