Drug Solubilization by Means of Partition/Association Equilibrium Using a Modified Nanosized Dendrimeric Biopolymer

2019 ◽  
Vol 20 (7) ◽  
Author(s):  
Hwee Jing Ong ◽  
Rodolfo Pinal
2020 ◽  
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka S. Tcholakova

Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage <i>in vitro</i> GI tract model. The main trends were checked also with progesterone and danazol.<br>Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.<br>The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (<i>T</i><sub>m</sub>) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease <i>T</i><sub>m</sub>, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their <i>T</i><sub>m</sub> was much higher than the temperature of the experiment (<i>T</i> = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, <i>T</i><sub>m</sub> < <i>T</i><sub>exp</sub>), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.<br>The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.<br>As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of <i>T</i><sub>m</sub> and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br>


2020 ◽  
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka S. Tcholakova

Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage <i>in vitro</i> GI tract model. The main trends were checked also with progesterone and danazol.<br>Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.<br>The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (<i>T</i><sub>m</sub>) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease <i>T</i><sub>m</sub>, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their <i>T</i><sub>m</sub> was much higher than the temperature of the experiment (<i>T</i> = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, <i>T</i><sub>m</sub> < <i>T</i><sub>exp</sub>), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.<br>The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.<br>As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of <i>T</i><sub>m</sub> and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br>


Author(s):  
Caroline Kofoed-Djursner ◽  
Ali Jamil ◽  
Arzu Selen ◽  
Anette Müllertz ◽  
Ragna Berthelsen

2021 ◽  
Vol 159 ◽  
pp. 105733
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka Tcholakova

2012 ◽  
Vol 423 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Nathalie Ménard ◽  
Nicolas Tsapis ◽  
Cécile Poirier ◽  
Thomas Arnauld ◽  
Laurence Moine ◽  
...  

Author(s):  
Nisar Ahmad Malik

: This mini review will give an insight into the need and usefulness of investigating the solubilization of poorly soluble drugs. Commonly used experimental and theoretical models are outlined to study the efficacy of the carrier or excipient for the poorly soluble drugs. Furthermore, the use of surface active agents for drug solubilization is discussed in correlation with the mathematical models suggested from time to time. A few experimental techniques are also discussed which would be very helpful in elucidating the interactions prevailing in the mixed systems of poorly soluble drugs and surface active agents.


2018 ◽  
Vol 19 (12) ◽  
pp. 3902 ◽  
Author(s):  
José L. Neira ◽  
A. Marcela Giudici ◽  
Felipe Hornos ◽  
Arantxa Arbe ◽  
Bruno Rizzuti

The 191-residue-long LrtA protein of Synechocystis sp. PCC 6803 is involved in post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family, intervening in protein synthesis. The protein consists of two domains: The N-terminal region (N-LrtA, residues 1101), which is common to all the members of the HPF, and seems to be well-folded; and the C-terminal region (C-LrtA, residues 102-191), which is hypothesized to be disordered. In this work, we studied the conformational preferences of isolated C-LrtA in solution. The protein was disordered, as shown by computational modelling, 1D-1H NMR, steady-state far- UV circular dichroism (CD) and chemical and thermal denaturations followed by fluorescence and far-UV CD. Moreover, at physiological conditions, as indicated by several biochemical and hydrodynamic techniques, isolated C-LrtA intervened in a self-association equilibrium, involving several oligomerization reactions. Thus, C-LrtA was an oligomeric disordered protein.


Sign in / Sign up

Export Citation Format

Share Document