Monte Carlo simulation on rotation of ferroelectric polarization by rotating magnetic field in conical-spin–ordered multiferroics

2009 ◽  
Vol 88 (4) ◽  
pp. 47002 ◽  
Author(s):  
Xiaoyan Yao ◽  
Qichang Li
2003 ◽  
Vol 14 (01) ◽  
pp. 49-59 ◽  
Author(s):  
MUKTISH ACHARYYA

Uniaxially anisotropic Heisenberg ferromagnet, in the presence of a magnetic field varying sinusoidally in time, is studied by Monte Carlo simulation. The axial (field applied only along the direction of anisotropy) and off-axial (field applied only along the direction which is perpendicular to the direction of anisotropy) dynamic transitions are studied. By studying the distribution of the dynamic order parameter component, it is observed that the axial transition is discontinuous for low anisotropy and becomes continuous in high anisotropy. The off-axial transition is found to be continuous for all values of anisotropy. In the infinite anisotropy limit, both types of transitions are compared with that observed in an Ising ferromagnet for the same value of the field and frequency. The infinitely anisotropic axial transition and dynamic transition in the Ising ferromagnet occur at different temperatures, whereas the infinitely anisotropic off-axial transition and the equilibrium ferro-para transition in the Ising model occur at the same temperature.


2011 ◽  
Vol 694 ◽  
pp. 538-542
Author(s):  
Wen Ting Zheng ◽  
Li Qin Jiang ◽  
Zhi Gao Huang

The influnence of the amplitude (H0) and frequency of sweeped magnetic field on the exchange bias He and coercivity Hc for ferromagnetic/ antiferromagnetic films has been simulated with Monte Carlo method. In a cycle, the sweeped frequency is inversely proportional to Monte Carlo steps (MCSs). It is observed that, for smaller MCSs, the values of He and the blocking tempreture Tb reduce evidently with increasing MCSs; for larger MCSs, the values of He and Tb decrease gently with increasing MCSs. It is also found the values of He and Tb decrease obviously with increasing values of H0 (HN0). However, on the contrary, the value of Hc increases with increasing values of H0 (HN0). At low temperature and little HN0, the asymmetric loop may appear, which is attributed to the competition between the relaxation time and the period of the external magnetic field. Moreover, the symmetry of the loops influences evidently the values of He and Hc.


2015 ◽  
Vol 117 (9) ◽  
pp. 094902
Author(s):  
Jiang Chen ◽  
Hongwei Zhu ◽  
Yinguang Ma ◽  
Detian Li ◽  
Zhidong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document