scholarly journals Spaciotemporal Association and Bone Morphogenetic Protein Regulation of Sclerostin and Osterix Expression during Embryonic Osteogenesis

Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4685-4692 ◽  
Author(s):  
Yoshio Ohyama ◽  
Akira Nifuji ◽  
Yukiko Maeda ◽  
Teruo Amagasa ◽  
Masaki Noda

Abstract Sclerostin (SOST), a member of the cystine-knot superfamily, is essential for proper skeletogenesis because a loss-of-function mutation in the SOST gene results in sclerosteosis featured with massive bone growth in humans. To understand the function of SOST in developmental skeletal tissue formation, we examined SOST gene expression in embryonic osteogenesis in vitro and in vivo. During osteoblastic differentiation in primary calvarial cells, the levels of SOST expression were increased along with those of alkaline phosphatase activity and nodule formation. In situ hybridization study revealed that SOST mRNA expression was observed in the digits in embryonic 13-d limb buds, and SOST expression was observed in osteogenic front in embryonic 16.5-d postcoitus embryonic calvariae, and this expression persisted in the peripheral area of cranial bone in the later developmental stage (embryonic 18.5-d post coitum). These temporal and spacial expression patterns in vivo and in vitro were in parallel to those of osterix (Osx), which is a critical transcriptional factor for bone formation. Similar coexpression of SOST and Osx mRNA was observed when the primary osteoblastic calvarial cells were cultured in the presence of bone morphogenetic protein (BMP)2 in vitro. Moreover, endogenous expression of SOST and Osx mRNA was inhibited by infection of noggin-expression adenovirus into the primary osteoblastic calvarial cells, suggesting that endogenous BMPs are required for these cells to express SOST and Osx mRNA. Thus, expression and regulation of SOST under the control of BMP were closely associated with those of Osx in vivo and in vitro.

2006 ◽  
Vol 281 (42) ◽  
pp. 31790-31800
Author(s):  
Martina Schmidl ◽  
Nadia Adam ◽  
Cordula Surmann-Schmitt ◽  
Takako Hattori ◽  
Michael Stock ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Li ◽  
Yunjia Song ◽  
Aobo Ma ◽  
Changyi Li

Although titanium (Ti) alloys have been widely used as implant materials, the bioinertness of pristine Ti impairs their bioactivity and early osseointegration. In the present work, we prepared TiO2 nanotubes (TNT) layer on the titanium (Ti) surface by anodic oxidation. The anodized surface was functionalized with human bone morphogenetic protein-2 coating to form the hBMP-2/TNT surface. The release behavior of hBMP-2 on the hBMP-2/TNT surface displayed a controlled and sustained pattern, compared to that on the hBMP-2/Ti surface, which showed a rapid release. In vitro cellular activity tests demonstrated that both TNT and hBMP-2/Ti surfaces, particularly the hBMP-2/TNT surface, enhanced adhesion, proliferation, and differentiation of osteoblast cells. Increased cell adhesion, improved cytoskeleton organization, and immunofluorescence staining of vinculin were observed on the modified surfaces. The TNT, hBMP-2/Ti, and hBMP-2/TNT surfaces, especially the hBMP-2/TNT surface, further displayed an upregulated gene expression of adhesion and osteogenic markers vinculin, collagen type 1, osteopontin, and osteocalcin, compared to the pristine Ti surface. In vivo experiments using a rat model demonstrated that the TNT and hBMP-2/Ti surfaces, in particular the hBMP-2/TNT surface, improved osseointegration and showed a superior bone bonding ability compared to Ti. Our study revealed a synergistic role played by TiO2 nanotubes nanotopography and hBMP-2 in promoting initial osteoblast adhesion, proliferation, differentiation, and osseointegration, thus suggesting a promising method for better modifying the implant surface.


Sign in / Sign up

Export Citation Format

Share Document