scholarly journals Role of Asparagine-Linked Glycosylation in Cell Surface Expression and Function of the Human Adrenocorticotropin Receptor (Melanocortin 2 Receptor) in 293/FRT Cells

Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 660-670 ◽  
Author(s):  
Simon Roy ◽  
Benoît Perron ◽  
Nicole Gallo-Payet

Asparagine-linked glycosylation (N-glycosylation) of G protein-coupled receptors may be necessary for functions ranging from agonist binding, folding, maturation, stability, and internalization. Human melanocortin 2 receptor (MC2R) possesses putative N-glycosylation sites in its N-terminal extracellular domain; however, to date, the role of MC2R N-glycosylation has yet to be investigated. The objective of the present study is to examine whether N-glycosylation is essential or not for cell surface expression and cAMP production in native and MC2R accessory protein (MRAPα, -β, or -dCT)-expressing cells using 293/FRT transfected with Myc-MC2R. Western blot analyses performed with or without endoglycosidase H, peptide:N-glycosidase F or tunicamycin treatments and site-directed mutagenesis revealed that MC2R was glycosylated in the N-terminal domain at its two putative N-glycosylation sites (Asn12-Asn13-Thr14 and Asn17-Asn18-Ser19). In the absence of human MRAP coexpression, N-glycosylation of at least one of the two sites was necessary for MC2R cell surface expression. However, when MRAP was present, cell surface expression of MC2R mutants was either rescued entirely with the N17-18Q (QQNN) and N12-13Q (NNQQ) mutants or partially with the unglycosylated N12-13, 17-18Q (QQQQ) mutant. Functional and expression analyses revealed a discrepancy between wild-type (WT) and QQQQ cell surface receptor levels and maximal cAMP production with a 4-fold increase in EC50 values. Taken together, these results indicate that the absence of MC2R N-glycosylation abrogates to a large extent MC2R cell surface expression in the absence of MRAPs, whereas when MC2R is N-glycosylated, it can be expressed at the plasma membrane without MRAP assistance.

2012 ◽  
Vol 302 (5) ◽  
pp. C781-C795 ◽  
Author(s):  
Hisayoshi Hayashi ◽  
Yukari Yamashita

SLC26A3 is a Cl−/HCO3−exchanger that plays a major role in Cl−absorption from the intestine. Its mutation causes congenital chloride-losing diarrhea. It has been shown that SLC26A3 are glycosylated, with the attached carbohydrate being extracellular and perhaps modulating function. However, the role of glycosylation has yet to be clearly determined. We used the approaches of biochemical modification and site-directed mutagenesis to prevent glycosylation. Deglycosylation experiments with glycosidases indicated that the mature glycosylated form of SLC26A3 exists at the plasma membrane, and a putative large second extracellular loop contains all of the N-linked carbohydrates. Deglycosylation of SLC26A3 causes depression of transport activity compared with wild-type, although robust intracellular pH changes were still observed, suggesting that N-glycosylation is not absolutely necessary for transport activity. To localize glycosylation sites, we mutated the five consensus sites by replacing asparagine (N) with glutamine. Immnoblotting suggests that SLC26A3 is glycosylated at N153, N161, and N165. Deglycosylation of SLC26A3 causes a defect in cell surface processing with decreased cell surface expression. We also assessed whether SLC26A3 is protected from tryptic digestion. While the mature glycosylated SLC26A3 showed little breakdown after treatment with trypsin, deglycosylated SLC26A3 exhibited increased susceptibility to trypsin, suggesting that the oligosaccharides protect SLC26A3 from tryptic digestion. In conclusion, our data indicate that N-glycosylation of SLC26A3 is important for cell surface expression and for protection from proteolytic degradation that may contribute to the understanding of pathogenesis of congenital disorders of glycosylation.


2018 ◽  
Vol 45 (5) ◽  
pp. 2071-2085 ◽  
Author(s):  
Maria Agthe ◽  
Yvonne Garbers ◽  
Joachim Grötzinger ◽  
Christoph Garbers

Background/Aims: The cytokine interleukin-11 (IL-11) has important pro- and anti-inflammatory functions. It activates its target cells through binding to the IL-11 receptor (IL-11R), and the IL-11/IL-11R complex recruits a homodimer of glycoprotein 130 (gp130). N-linked glycosylation, a post-translational modification where complex oligosaccharides are attached to the side chain of asparagine residues, is often important for stability, folding and biological function of cytokine receptors. Methods: We generated different IL-11R mutants via site-directed mutagenesis and analyzed them in different cell lines via Western blot, flow cytometry, confocal microscopy and proliferation assays. Results: In this study, we identified two functional N-glycosylation sites in the D2 domain of the IL-11R at N127 and N194. While mutation of N127Q only slightly affects cell surface expression of the IL-11R, mutation of N194Q broadly prevents IL-11R appearance at the plasma membrane. Accordingly, IL-11R mutants lacking N194 are retained within the ER, whereas the N127 mutant is transported through the Golgi complex to the cell surface, uncovering a differential role of the two N-glycan sequons for IL-11R maturation. Interestingly, IL-11R mutants devoid of one or both N-glycans are still biologically active. Furthermore, the IL-11RN127Q/N194Q mutant shows no inducible shedding by ADAM10, but is rather constitutively released into the supernatant. Conclusion: Our results show that the two N-glycosylation sites differentially influence stability and proteolytic processing of the IL-11R, but that N-linked glycosylation is not a prerequisite for IL-11 signaling.


1985 ◽  
Vol 5 (11) ◽  
pp. 3074-3083 ◽  
Author(s):  
C E Machamer ◽  
R Z Florkiewicz ◽  
J K Rose

We investigated the role of glycosylation in intracellular transport and cell surface expression of the vesicular stomatitis virus glycoprotein (G) in cells expressing G protein from cloned cDNA. The individual contributions of the two asparagine-linked glycans of G protein to cell surface expression were assessed by site-directed mutagenesis of the coding sequence to eliminate one or the other or both of the glycosylation sites. One oligosaccharide at either position was sufficient for cell surface expression of G protein in transfected cells, and the rates of oligosaccharide processing were similar to the rate observed for wild-type protein. However, the nonglycosylated G protein synthesized when both glycosylation sites were eliminated did not reach the cell surface. This protein did appear to reach a Golgi-like region, as determined by indirect immunofluorescence microscopy, however, and was modified with palmitic acid. It was also apparently not subject to increased proteolytic breakdown.


2000 ◽  
Vol 347 (3) ◽  
pp. 771-779 ◽  
Author(s):  
Thomas C. ELLEMAN ◽  
Maurice J. FRENKEL ◽  
Peter A. HOYNE ◽  
Neil M. MCKERN ◽  
Leah COSGROVE ◽  
...  

Site-directed mutagenesis has been used to remove 15 of the 18 potential N-linked glycosylation sites, in 16 combinations, from the human exon 11-minus receptor isoform. The three glycosylation sites not mutated were asparagine residues 25, 397 and 894, which are known to be important in receptor biosynthesis or function. The effects of these mutations on proreceptor processing into α and β subunits, cell-surface expression, insulin binding and receptor autophosphorylation were assessed in Chinese hamster ovary cells. The double mutants 16+78, 16+111, 16+215, 16+255, 337+418, the triple mutants 295+337+418, 295+418+514, 337+418+514 and 730+743+881 and the quadruple mutants 606+730+743+881 and 671+730+743+881 seemed normal by all criteria examined. The triple mutant 16+215+255 showed only low levels of correctly processed receptor on the cell surface, this processed receptor being autophosphorylated in response to insulin. The quadruple mutant 624+730+743+881 showed normal processing and ligand binding but exhibited a constitutively active tyrosine kinase as judged by autophosphorylation. Three higher-order mutants were constructed, two of which, 16+337+418+730+743+881 (∆6) and 16+295+337+418+730+743+881 (∆7a), seemed normal. The third construct, 16+337+418+514+730+743+881 (∆7b), was expressed at high levels on the cell surface, essentially as uncleaved proreceptor with only the small proportion of ∆7b that was correctly processed showing insulin-stimulated autophosphorylation. The mutations of ∆6 and ∆7a were incorporated into soluble ectodomains, which had affinities for insulin that were 4-fold that of wild-type ectodomain. The ∆6 ectodomain expressed in Lec8 cells was produced in quantity in a bioreactor for subsequent structural analysis.


1998 ◽  
Vol 331 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Ana M. PAJOR ◽  
Ning SUN ◽  
Heidi G. VALMONTE

Succinate transport by the rabbit Na+/dicarboxylate co-transporter, NaDC-1, expressed in Xenopusoocytes was inhibited by the histidyl-selective reagent diethyl pyrocarbonate (DEPC). Therefore the role of histidine residues in the function of NaDC-1 was examined by site-directed mutagenesis. All 11 histidine residues in NaDC-1 were converted to alanine, but only mutant H106A exhibited a decrease in succinate transport. Additional mutations of NaDC-1 at position 106 showed that aspartic acid and asparagine, but not arginine, can substitute for histidine. Examination of succinate and citrate kinetics of H106A revealed a decrease in Vmax with no change in Km. Cell surface biotinylation experiments showed that the transport activity of all four mutants at position 106 was correlated with the amount of cell surface expression, suggesting a role of His-106 in membrane expression rather than function. Two of the histidine mutants, H153A and H569A, exhibited insensitivity to inhibition by DEPC, indicating that these residues are involved in binding DEPC. Neither of these residues is required for transport activity; thus DEPC probably inhibits NaDC-1 function by hindrance of the mobility of the carrier. We conclude that histidine residues are not critical for transport function in NaDC-1, although His-106 might be involved in determining protein expression or stability in the membrane.


1985 ◽  
Vol 5 (11) ◽  
pp. 3074-3083
Author(s):  
C E Machamer ◽  
R Z Florkiewicz ◽  
J K Rose

We investigated the role of glycosylation in intracellular transport and cell surface expression of the vesicular stomatitis virus glycoprotein (G) in cells expressing G protein from cloned cDNA. The individual contributions of the two asparagine-linked glycans of G protein to cell surface expression were assessed by site-directed mutagenesis of the coding sequence to eliminate one or the other or both of the glycosylation sites. One oligosaccharide at either position was sufficient for cell surface expression of G protein in transfected cells, and the rates of oligosaccharide processing were similar to the rate observed for wild-type protein. However, the nonglycosylated G protein synthesized when both glycosylation sites were eliminated did not reach the cell surface. This protein did appear to reach a Golgi-like region, as determined by indirect immunofluorescence microscopy, however, and was modified with palmitic acid. It was also apparently not subject to increased proteolytic breakdown.


1998 ◽  
Vol 12 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Ana C. Latronico ◽  
Yaohui Chai ◽  
Ivo J.P. Arnhold ◽  
Xuebo Liu ◽  
Berenice B. Mendonca ◽  
...  

Abstract In this report, the genomic DNA was examined from two siblings with gonadal LH resistance. A 46,XY pseudohermaphrodite presented with female external genitalia and his 46,XX sister exhibited menstrual irregularities (oligoamenorrhea) and infertility. Exons 1–11 of the LH receptor (LHR) gene were amplified by the PCR using different sets of intronic primers and were directly sequenced. Sequencing revealed that both individuals carried a deletion of nucleotides 1822–1827, resulting in the deletion of Leu-608 and Val-609 within the seventh transmembrane helix. This mutation was introduced into a recombinant human (h) LHR cDNA. Transfections of 293 cells with hLHR(wt) vs. hLHR(ΔL608,V609) revealed that very little of the mutant receptor was expressed at the cell surface. This was due to both a decrease in the total amount of receptor expressed as well as to an increased intracellular retention of the mutant receptor. In spite of the decreased cell surface expression of the mutant, sufficient amounts were present to allow for assessment of its functions. Equilibrium binding assays showed that the cell surface hLHR(ΔL608,V609) binds hCG with an affinity comparable to that of the wild-type receptor. However, the cells expressing the hLHR(ΔL608,V609) exhibit only a 1.5- to 2.4-fold stimulation of cAMP production in response to hCG. In contrast, cells expressing comparably low levels of hLHR(wt) responded to hCG with 11- to 30-fold increases of cAMP levels. Therefore, the testicular and ovarian unresponsiveness to LH in these patients appears to be due to a mutation of the hLHR gene in which Leu-608 and Val-609 are deleted. As a consequence, the majority of the mutant receptor is retained intracellularly. The small percentage of mutant receptor that is expressed at the cell surface binds hormone normally but is unable to activate Gs.


2002 ◽  
Vol 283 (1) ◽  
pp. H77-H84 ◽  
Author(s):  
Qiuming Gong ◽  
Corey L. Anderson ◽  
Craig T. January ◽  
Zhengfeng Zhou

The human ether-à-go-go-related gene (HERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel in the heart. We previously showed that HERG channel protein is modified by N-linked glycosylation. HERG protein sequence contains two extracellular consensus sites for N-linked glycosylation (N598, N629). In this study, we used the approaches of site-directed mutagenesis and biochemical modification to inhibit N-linked glycosylation and studied the role of glycosylation in the cell surface expression and turnover of HERG channels. Our results show that N598 is the only site for N-linked glycosylation and that glycosylation is not required for the cell surface expression of functional HERG channels. In contrast, N629 is not used for glycosylation, but mutation of this site (N629Q) causes a protein trafficking defect, which results in its intracellular retention. Pulse-chase experiments show that the turnover rate of nonglycosylated HERG channel is faster than that of the glycosylated form, suggesting that N-linked glycosylation plays an important role in HERG channel stability.


2010 ◽  
Vol 427 (2) ◽  
pp. 305-312 ◽  
Author(s):  
Tamar Liron ◽  
Tal Nahari ◽  
Miriam C. Souroujon ◽  
Drorit Neumann

EPO (erythropoietin), the major hormone regulating erythropoiesis, functions via activation of its cell-surface receptor (EPO-R) present on erythroid progenitor cells. One of the most striking properties of EPO-R is its low expression on the cell surface, as opposed to its high intracellular levels. The low cell-surface expression of EPO-R may thus limit the efficacy of EPO that is routinely used to treat primary and secondary anaemia. In a recent study [Nahari, Barzilay, Hirschberg and Neumann (2008) Biochem. J. 410, 409–416] we have shown that insertion of an NPVY sequence into the intracellular domain of EPO-R increases its cell-surface expression. In the present study we demonstrate that this NPVY EPO-R insert has a selective effect on EPO-mediated downstream signalling in Ba/F3 cells expressing this receptor (NPVY-EPO-R). This is monitored by increased phosphorylation of the NPVY-EPO-R (on Tyr479), Akt, JAK2 (Janus kinase 2) and ERK1/2 (extracellular-signal-regulated kinase 1/2), but not STAT5 (signal transducer and activator of transcription 5), as compared with cells expressing wild-type EPO-R. This enhanced signalling is reflected in augmented proliferation at low EPO levels (0.05 units/ml) and protection against etoposide-induced apoptosis. Increased cell-surface levels of NPVY-EPO-R are most probably not sufficient to mediate these effects as the A234E-EPO-R mutant that is expressed at high cell-surface levels does not confer an augmented response to EPO. Taken together, we demonstrate that insertion of an NPVY sequence into the cytosolic domain of the EPO-R confers not only improved maturation, but also selectively affects EPO-mediated signalling resulting in an improved responsiveness to EPO reflected in cell proliferation and protection against apoptosis.


2020 ◽  
pp. jbc.RA120.014352
Author(s):  
Jason Schapansky ◽  
Yelena Y Grinberg ◽  
David M Osiecki ◽  
Emily A Freeman ◽  
Stephen G Walker ◽  
...  

Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer’s disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known. To identify such targets, we conducted a screen of small molecule compounds with known pharmacology using human myeloid cells, searching for those that enhance TREM2 protein at the cell surface Inhibitors of the kinases MEK1/2 displayed the strongest and most consistent increases in cell surface TREM2 protein, identifying a previously unreported pathway for TREM2 regulation. Unexpectedly, inhibitors of the downstream effector ERK kinases did not have the same effect, suggesting that non-canonical MEK signaling regulates TREM2 trafficking. In addition, siRNA knockdown experiments confirmed that decreased MEK1 and MEK2 was required for this recruitment. In iPSC-derived microglia, MEK inhibition increased cell surface TREM2 only modestly, so various cytokines were used to alter iPSC microglia phenotype, making cells more sensitive to MEK inhibitor-induced TREM2 recruitment. Of those tested, only IFN-gamma priming prior to MEK inhibitor treatment resulted in greater TREM2 recruitment. These data identify the first known mechanisms for increasing surface TREM2 protein and TREM2-regulated function in human myeloid cells, and are the first to show a role for MEK1/MEK2 signaling in TREM2 activity.


Sign in / Sign up

Export Citation Format

Share Document