scholarly journals Endothelial Metabolism of Angiotensin II to Angiotensin III, not Angiotensin (1–7), Augments the Vasorelaxation Response in Adrenal Cortical Arteries

Endocrinology ◽  
2013 ◽  
Vol 154 (12) ◽  
pp. 4768-4776 ◽  
Author(s):  
Phillip G. Kopf ◽  
William B. Campbell

Hyperaldosteronism is linked to the development and progression of several different cardiovascular diseases. Angiotensin (Ang) II increases aldosterone secretion and adrenal blood flow. Ang II peptide fragments are produced by various peptidases, and these Angs have diverse and vital physiologic roles. Due to the uncharacteristic vasorelaxation of adrenal arteries by Ang II, we tested the hypothesis that Ang II metabolism contributes to its relaxant activity in adrenal arteries. Metabolism of Angs by bovine adrenal cortical arteries and isolated bovine adrenal vascular cells was measured by liquid chromatography-mass spectrometry. The primary Ang metabolites of adrenal arteries are Ang III and Ang (1–7), with Ang IV produced to a lesser extent. Bovine microvascular endothelial cells produced a similar metabolic profile to adrenal arteries, whereas bovine adrenal artery smooth muscle cells exhibited less metabolism. In preconstricted adrenal arteries, Ang II caused relaxation in picomolar concentrations and constrictions at 10nM. Ang-converting enzyme 2 inhibition augmented this relaxation response, whereas aminopeptidase inhibition did not. Ang III was equipotent to Ang II in relaxing adrenal arteries. Ang IV did not cause relaxation. Nitric oxide synthase inhibition enhanced Ang II-induced constriction of adrenal arteries. Aminopeptidase inhibition increased the concentration range for Ang II-induced constriction of adrenal arteries. Ang III and Ang IV did not change the basal tone but caused constriction of adrenal arteries with nitric oxide synthase inhibition. These data indicate that Ang II metabolism modulates the vascular effects of Ang II in the adrenal vasculature.

1995 ◽  
Vol 268 (6) ◽  
pp. F1004-F1008 ◽  
Author(s):  
F. B. Gabbai ◽  
S. C. Thomson ◽  
O. Peterson ◽  
L. Wead ◽  
K. Malvey ◽  
...  

Endothelium-dependent nitric oxide (EDNO) exerts control over the processes of glomerular filtration and tubular reabsorption. The importance of the renal nerves to the tonic influence of EDNO in the glomerular microcirculation and proximal tubule was tested by renal micropuncture in euvolemic adult male Munich-Wistar rats. The physical determinants of glomerular filtration and proximal reabsorption were assessed before and during administration of the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA), in control animals and in animals 5–9 days after either ipsilateral surgical renal denervation (DNX) or after either sham surgery (SHX). L-NMMA caused single-nephron glomerular filtration rate to decline in control and SHX animals but not in DNX rats. L-NMMA caused a reduction in proximal reabsorption in control and SHX rats, which was prevented by prior DNX. DNX did not alter urinary guanosine 3',5'-cyclic monophosphate excretion, and, although DNX upregulates glomerular angiotensin II (ANG II) receptors, prior DNX did not alter intrarenal ANG II content as evaluated by radioimmunoassay. Some component of renal adrenergic activity is required for the full expression of the glomerular and tubular effects of blockade of nitric oxide synthase.


1999 ◽  
Vol 277 (2) ◽  
pp. H842-H847
Author(s):  
Saral Amarnani ◽  
Belinda Sangrat ◽  
Gautam Chaudhuri

The endothelium-dependent vasodilators ACh, histamine, and bradykinin were studied in the isolated, perfused human placental cotyledon. Histamine caused a decrease in perfusion pressure that was attenuated by cimetidine. Bradykinin, at lower concentrations (10−20 to 10−14 M), produced a concentration-dependent decrease in perfusion pressure, whereas at higher concentrations it produced an increase in perfusion pressure. ACh was without any effect. The decrease in perfusion pressure observed with bradykinin was potentiated by captopril and was significantly attenuated in the presence of HOE-140, the B2-receptor antagonist, or by pretreatment with an inhibitor of nitric oxide synthase, but not by an inhibitor of cyclooxygenase. The decrease in perfusion pressure observed with bradykinin was potentiated by ANG I but not by ANG II. It is concluded that endothelium-dependent vasodilation can be demonstrated with histamine and bradykinin in the fetoplacental vessels, and at least for bradykinin, this is partly mediated by release of nitric oxide. The potentiation of the bradykinin response in the presence of ANG I may serve to buffer the vasoconstriction produced by ANG II in the fetoplacental circulation.


1998 ◽  
Vol 274 (3) ◽  
pp. F516-F524 ◽  
Author(s):  
Atsuhiro Ichihara ◽  
Edward W. Inscho ◽  
John D. Imig ◽  
L. Gabriel Navar

This study was performed to determine the influence of neuronal nitric oxide synthase (nNOS) on renal arteriolar tone under conditions of normal, interrupted, and increased volume delivery to the macula densa segment and on the microvascular responses to angiotensin II (ANG II). Experiments were performed in vitro on afferent (21.2 ± 0.2 μm) and efferent (18.5 ± 0.2 μm) arterioles of kidneys harvested from male Sprague-Dawley rats, using the blood-perfused juxtamedullary nephron technique. Superfusion with the specific nNOS inhibitor, S-methyl-l-thiocitrulline (l-SMTC), decreased afferent and efferent arteriolar diameters, and these decreases in arteriolar diameters were prevented by interruption of distal volume delivery by papillectomy. When 10 mM acetazolamide was added to the blood perfusate to increase volume delivery to the macula densa segment, afferent arteriolar vasoconstrictor responses tol-SMTC were enhanced, but this effect was again completely prevented after papillectomy. In contrast, the arteriolar diameter responses to the nonselective NOS inhibitor, N ω-nitro-l-arginine (l-NNA) were only attenuated by papillectomy.l-SMTC (10 μM) enhanced the efferent arteriolar vasoconstrictor response to ANG II but did not alter the afferent arteriolar vasoconstrictor responsiveness to ANG II. In contrast, l-NNA (100 μM) enhanced both afferent and efferent arteriolar vasoconstrictor responses to ANG II. These results indicate that the modulating influence of nNOS on afferent arteriolar tone of juxtamedullary nephrons is dependent on distal tubular fluid flow. Furthermore, nNOS exerts a differential modulatory action on the juxtamedullary microvasculature by enhancing efferent, but not afferent, arteriolar responsiveness to ANG II.


1995 ◽  
Vol 268 (3) ◽  
pp. C700-C707 ◽  
Author(s):  
L. J. Chandler ◽  
K. Kopnisky ◽  
E. Richards ◽  
F. T. Crews ◽  
C. Sumners

Consistent with stimulation of expression of an inducible form of nitric oxide synthase (iNOS), exposure of rat astroglial cultures to lipopolysaccharide (LPS) caused a time-dependent increase in the accumulation of nitrite in the culture media. Addition of the peptide angiotensin II (ANG II) with LPS decreased subsequent formation of nitrite in a concentration-dependent manner (concentration inhibiting 50% of maximal response approximately 1 nM). The ANG II effect could be blocked by the ANG II type 1 (AT1 receptor antagonist losartan but not by the ANG II type 2 (AT2) receptor antagonist PD-123177. ANG II had no effect on nitrite formation stimulated by a combination of inflammatory cytokines (interleukin-1 beta, tumor necrosis factor-alpha, and interferon-gamma). A brief 10-min exposure to ANG II was sufficient to cause an approximately 30% inhibition of the LPS response, with maximal inhibition of approximately 65% after 3 h, and occurred only when ANG II was added during the iNOS induction phase. Consistent with partial inhibition of LPS-stimulated expression of iNOS, ANG II reduced the levels of both iNOS mRNA and iNOS protein. These results demonstrate that ANG II can decrease LPS-stimulated NO production in astroglia by inhibiting induction of iNOS expression.


1998 ◽  
Vol 275 (2) ◽  
pp. H416-H421 ◽  
Author(s):  
Carol A. Gunnett ◽  
Yi Chu ◽  
Donald D. Heistad ◽  
Angela Loihl ◽  
Frank M. Faraci

The inducible isoform of nitric oxide synthase (iNOS) is expressed after systemic administration of lipopolysaccharide (LPS). The importance of expression of iNOS in blood vessels is poorly defined. Because nitric oxide from iNOS may alter vasomotor function, we examined effects of LPS on vasomotor function in carotid arteries from iNOS-deficient mice. We studied contraction of the carotid artery from wild-type and iNOS-deficient mice in vitro 12 h after injection of LPS (20 mg/kg ip). Contractile responses to PGF2α (3–30 μM) and thromboxane A2 analog (U-46619; 3–100 nM) were evaluated using vascular rings from mice treated with vehicle or LPS. Maximum force of contraction generated by rings in response to PGF2α was 0.39 ± 0.02 and 0.25 ± 0.01 (SE) g ( n = 14) in vehicle and LPS-treated wild-type mice, respectively ( P < 0.001 vs. vehicle). Thus LPS reduced constrictor responses in wild-type mice. Thiocitrulline and aminoguanidine (inhibitors of iNOS) improved contractile responses from LPS-treated wild-type vessels. Indomethacin also improved constrictor responses in arteries from wild-type mice injected with LPS. In contrast, contraction of the carotid arteries in response to PGF2α and U-46619 was not impaired in LPS-treated iNOS-deficient mice, and contraction was not altered by inhibitors of iNOS. Expression of iNOS mRNA was confirmed using RT-PCR in carotid arteries from wild-type mice after injection of LPS but not vehicle. PCR products for iNOS were not observed in iNOS-deficient mice. These findings provide the first direct evidence that iNOS mediates impairment of vascular contraction after treatment with LPS.


2012 ◽  
Vol 302 (2) ◽  
pp. E201-E208 ◽  
Author(s):  
Jeong-a Kim ◽  
Hyun-Ju Jang ◽  
Luis A. Martinez-Lemus ◽  
James R. Sowers

Elevated tissue levels of angiotensin II (ANG II) are associated with impairment of insulin actions in metabolic and cardiovascular tissues. ANG II-stimulated activation of mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K) in cardiovascular tissues is implicated in cardiac hypertrophy and vascular remodeling. However, the role of ANG II-stimulated mTOR/p70S6K in vascular endothelium is poorly understood. In the present study, we observed that ANG II stimulated p70S6K in bovine aortic endothelial cells. ANG II increased phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser636/639 and inhibited the insulin-stimulated phosphorylation of endothelial nitric oxide synthase (eNOS). An inhibitor of mTOR, rapamycin, attenuated the ANG II-stimulated phosphorylation of p70S6K and phosphorylation of IRS-1 (Ser636/639) and blocked the ability of ANG II to impair insulin-stimulated phosphorylation of eNOS, nitric oxide production, and mesenteric-arteriole vasodilation. Moreover, point mutations of IRS-1 at Ser636/639 to Ala prevented the ANG II-mediated inhibition of insulin signaling. From these results, we conclude that activation of mTOR/p70S6K by ANG II in vascular endothelium may contribute to impairment of insulin-stimulated vasodilation through phosphorylation of IRS-1 at Ser636/639. This ANG II-mediated impairment of vascular actions of insulin may help explain the role of ANG II as a link between insulin resistance and hypertension.


2007 ◽  
Vol 292 (6) ◽  
pp. C2185-C2196 ◽  
Author(s):  
Jianyu Li ◽  
Xiangmin Zhao ◽  
Xinmei Li ◽  
Kenneth M. Lerea ◽  
Susan C. Olson

We have previously reported that angiotensin II (ANG II) stimulated Src tyrosine kinase via a pertussis toxin-sensitive type 2 receptor, which, in turn, activates MAPK, resulting in an increase in nitric oxide synthase (NOS) expression in pulmonary artery endothelial cells (PAECs). The present study was designed to investigate the pathway by which ANG II activates Src leading to an increase in ERK1/ERK2 phosphorylation and an increase in NOS protein in PAECs. Transfection of PAECs with Gαi3 dominant negative (DN) cDNA blocked the ANG II-dependent activation of Src, ERK1/ERK2 phosphorylation, and increase in NOS expression. ANG II stimulated an increase in tyrosine phosphorylation of sequence homology of collagen (Shc; 15 min) that was prevented when PAECs were pretreated with 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolo-[3,4-d]pyrimidine (PP2), a Src inhibitor. ANG II induced a Src-dependent association between Shc and growth factor receptor-bound protein 2 (Grb2) and between Grb2 and son of sevenless (Sos), both of which were maximal at 15 min. The ANG II-dependent increase in Ras GTP binding was prevented when PAECs were pretreated with the AT2 antagonist PD-123319 or with PP2 or were transfected with Src DN cDNA. ANG II-dependent activation of MAPK and the increase in endothelial NOS (eNOS) were prevented when PAECs were transfected with Ras DN cDNA or treated with FTI-277, a farnesyl transferase inhibitor. ANG II induction of Raf-1 phosphorylation was prevented when PAECs were pretreated with PD-123319 and PP2. Raf kinase inhibitor 1 prevented the ANG II-dependent increase in eNOS expression. Collectively, these data suggest that Gαi3, Shc, Grb2, Ras, and Raf-1 link Src to activation of MAPK and to the AT2-dependent increase in eNOS expression in PAECs.


2010 ◽  
Vol 112 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Tzu-Hurng Cheng ◽  
Yuk-Man Leung ◽  
Chi-Wai Cheung ◽  
Cheng-Hsien Chen ◽  
Yen-Ling Chen ◽  
...  

Background Propofol may have beneficial effects on the prevention of angiotensin II (Ang II)-induced cardiac fibroblast proliferation via its antioxidative properties. The authors hypothesized that propofol may alter Ang II-induced cell proliferation and aimed to identify the putative underlying signaling pathways in rat cardiac fibroblasts. Methods Cultured rat cardiac fibroblasts were pretreated with propofol then stimulated with Ang II; cell proliferation and endothelin-1 gene expression were examined. The effect of propofol on Ang II-induced nicotinamide adenine dinucleotide phosphate-oxidase activity, reactive oxygen species formation, extracellular signal-regulated kinase phosphorylation, and activator protein 1-mediated reporter activity were also examined. The effect of propofol on nitric oxide production and protein kinase B and endothelial nitric oxide synthase phosphorylations were also tested to elucidate the intracellular mechanism of propofol in proliferation. Results Ang II (100 nm) increased cell proliferation and endothelin-1 expression, which were partially inhibited by propofol (10 or 30 microm). Propofol also inhibited Ang II-increased nicotinamide adenine dinucleotide phosphate-oxidase activity, reactive oxygen species formation, extracellular signal-regulated kinase phosphorylation, and activator protein 1-mediated reporter activity. Propofol was also found to increase nitric oxide generation and protein kinase B and nitric oxide synthase phosphorylations. Nitric oxide synthase inhibitor (N-nitro-L-arginine methylester) and the short interfering RNA transfection for protein kinase B or endothelial nitric oxide synthase markedly attenuated the inhibitory effect of propofol on Ang II-induced cell proliferation. Conclusions The authors' results suggest that propofol prevents cardiac fibroblast proliferation by interfering with the generation of reactive oxygen species and involves the activation of the protein kinase B-endothelial nitric oxide synthase-nitric oxide pathway.


Sign in / Sign up

Export Citation Format

Share Document