scholarly journals Evidence That Dynorphin Acts Upon KNDy and GnRH Neurons During GnRH Pulse Termination in the Ewe

Endocrinology ◽  
2018 ◽  
Vol 159 (9) ◽  
pp. 3187-3199 ◽  
Author(s):  
Peyton W Weems ◽  
Lique M Coolen ◽  
Stanley M Hileman ◽  
Steven Hardy ◽  
Rick B McCosh ◽  
...  

Abstract A subpopulation of neurons located within the arcuate nucleus, colocalizing kisspeptin, neurokinin B, and dynorphin (Dyn; termed KNDy neurons), represents key mediators of pulsatile GnRH secretion. The KNDy model of GnRH pulse generation proposes that Dyn terminates each pulse. However, it is unknown where and when during a pulse that Dyn is released to inhibit GnRH secretion. Dyn acts via the κ opioid receptor (KOR), and KOR is present in KNDy and GnRH neurons in sheep. KOR, similar to other G protein–coupled receptors, are internalized after exposure to ligand, and thus internalization can be used as a marker of endogenous Dyn release. Thus, we hypothesized that KOR will be internalized at pulse termination in both KNDy and GnRH neurons. To test this hypothesis, GnRH pulses were induced in gonad-intact anestrous ewes by injection of neurokinin B (NKB) into the third ventricle and animals were euthanized at times of either pulse onset or termination. NKB injections produced increased internalization of KOR within KNDy neurons during both pulse onset and termination. In contrast, KOR internalization into GnRH neurons was seen only during pulse termination, and only in GnRH neurons within the mediobasal hypothalamus (MBH). Overall, our results indicate that Dyn is released onto KNDy cells at the time of pulse onset, and continues to be released during the duration of the pulse. In contrast, Dyn is released onto MBH GnRH neurons only at pulse termination and thus actions of Dyn upon KNDy and GnRH cell bodies may be critical for pulse termination.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yoshihisa Uenoyama ◽  
Mayuko Nagae ◽  
Hitomi Tsuchida ◽  
Naoko Inoue ◽  
Hiroko Tsukamura

Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.


2021 ◽  
Author(s):  
Margaritis Voliotis ◽  
Xiao Feng Li ◽  
Ross De Burgh ◽  
Geffen Lass ◽  
Deyana Ivanova ◽  
...  

AbstractPulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons’ signalling properties. However, the precise mechanism of regulation remains mostly unknown. Here we investigate these mechanisms using a combination of mathematical and in-vivo approaches. We find that optogenetic stimulation of KNDy neurons stimulates pulsatile GnRH/LH secretion in estrous mice but inhibits it in diestrous mice. Our mathematical modelling suggests that this differential effect is due to well-orchestrated changes in neuropeptide signalling and the excitability of the KNDy population controlled via glutamate signalling. Guided by model predictions, we show that blocking glutamate signalling in the arcuate nucleus in diestrous animals inhibits LH pulses, and that optic stimulation of the KNDy population mitigates this inhibition. In estrous mice, disruption of glutamate signalling inhibits pulses generated via sustained low-frequency optic stimulation of the KNDy population, supporting the idea that the level of network excitability is critical for pulse generation. Our results reconcile previous puzzling findings regarding the estradiol-dependent effect that several neuromodulators have on the GnRH pulse generator dynamics. Therefore, we anticipate our model to be a cornerstone for a more quantitative understanding of the pathways via which gonadal steroids regulate GnRH secretion dynamics. Finally, our results could inform useful repurposing of drugs targeting the glutamate system in reproductive therapy.


Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4259-4269 ◽  
Author(s):  
Robert L. Goodman ◽  
Stanley M. Hileman ◽  
Casey C Nestor ◽  
Katrina L. Porter ◽  
John M. Connors ◽  
...  

Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus play a key role in GnRH pulse generation, with kisspeptin driving GnRH release and neurokinin B (NKB) and dynorphin acting as start and stop signals, respectively. In this study, we tested this hypothesis by determining the actions, if any, of four neurotransmitters found in KNDy neurons (kisspeptin, NKB, dynorphin, and glutamate) on episodic LH secretion using local administration of agonists and antagonists to receptors for these transmitters in ovariectomized ewes. We also obtained evidence that GnRH-containing afferents contact KNDy neurons, so we tested the role of two components of these afferents: GnRH and orphanin-FQ. Microimplants of a Kiss1r antagonist briefly inhibited LH pulses and microinjections of 2 nmol of this antagonist produced a modest transitory decrease in LH pulse frequency. An antagonist to the NKB receptor also decreased LH pulse frequency, whereas NKB and an antagonist to the receptor for dynorphin both increased pulse frequency. In contrast, antagonists to GnRH receptors, orphanin-FQ receptors, and the N-methyl-D-aspartate glutamate receptor had no effect on episodic LH secretion. We thus conclude that the KNDy neuropeptides act in the arcuate nucleus to control episodic GnRH secretion in the ewe, but afferent input from GnRH neurons to this area does not. These data support the proposed roles for NKB and dynorphin within the KNDy neural network and raise the possibility that kisspeptin contributes to the control of GnRH pulse frequency in addition to its established role as an output signal from KNDy neurons that drives GnRH pulses.


2010 ◽  
Vol 314 (2) ◽  
pp. 158-163 ◽  
Author(s):  
Lazar Z. Krsmanovic ◽  
Lian Hu ◽  
Po-Ki Leung ◽  
Hao Feng ◽  
Kevin J. Catt

2014 ◽  
Vol 28 (8) ◽  
pp. 1362-1380 ◽  
Author(s):  
Oline K. Rønnekleiv ◽  
Yuan Fang ◽  
Chunguang Zhang ◽  
Casey C. Nestor ◽  
Peizhong Mao ◽  
...  

Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4200-4213 ◽  
Author(s):  
Cleyde V. Helena ◽  
Natalia Toporikova ◽  
Bruna Kalil ◽  
Andrea M. Stathopoulos ◽  
Veronika V. Pogrebna ◽  
...  

Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.


Endocrinology ◽  
2014 ◽  
Vol 155 (10) ◽  
pp. 3945-3955 ◽  
Author(s):  
Agnete Overgaard ◽  
Francisco Ruiz-Pino ◽  
Juan M. Castellano ◽  
Manuel Tena-Sempere ◽  
Jens D. Mikkelsen

Abstract Kisspeptin, neurokinin B (NKB) and dynorphin A are coexpressed in a population of neurons in the arcuate nucleus (ARC), termed KNDy neurons, which were recently recognized as important elements for the generation of GnRH pulses. However, the topographic distribution of these peptides and their regulated expression by sex steroids are still not well understood. In this study, detailed examination of NKB and kisspeptin immunoreactivity in the rat ARC was carried out, including comparison between sexes, with and without sex steroid replacement. Neurons expressing kisspeptin and NKB were more prominent in the caudal ARC of females, whereas neurons expressing NKB, but not kisspeptin, were the most abundant in the male. Sex steroid manipulation revealed differential regulation of kisspeptin and NKB; although kisspeptin immunoreactive (ir) cells increased in response to gonadectomy, NKB remained unchanged. Furthermore, the number of NKB-ir cells increased upon sex steroid replacement compared with gonadectomy, whereas kisspeptin did not, suggesting that sex steroids differently regulate these peptides. In addition, only in females did the density of kisspeptin- and NKB-ir fibers in the ARC increase upon sex steroid replacement in relation to sham and ovariectomy, respectively, suggesting sex-specific regulation of release. In conclusion, our observations reveal sex differences in the number of kisspeptin- and NKB-ir cells, which are more prominent in the caudal ARC. The divergent regulation of kisspeptin and NKB peptide contents in the ARC as a function of sex and steroid milieu enlarge our understanding on how these neuropeptides are posttranscriptionally regulated in KNDy neurons.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 982 ◽  
Author(s):  
Tony M. Plant

This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A534-A534
Author(s):  
KaLynn Harlow ◽  
Max Griesgraber ◽  
Andrew Seman ◽  
Sydney Shuping ◽  
Jeffrey Sommer ◽  
...  

Abstract Undernutrition negatively impacts reproductive success, at least in part, through a central suppression of GnRH secretion. Given that GnRH neurons are devoid of receptors for peripheral metabolic hormones such as leptin and insulin, nutritional regulation of GnRH secretion must be through afferent input. Neurons which co-express kisspeptin, neurokinin B (NKB), and dynorphin, termed KNDy neurons, are a unique population of cells in the arcuate nucleus (ARC) of the hypothalamus and are believed to play a critical role in GnRH/LH pulse generation. With our recent evidence that chronic feed restriction reduced kisspeptin and NKB in young, castrated male sheep, we hypothesized that nutrient restriction would inhibit expression of the KNDy neuron peptides kisspeptin and NKB, while increasing dynorphin expression in young, ovariectomized female sheep. Fifteen ewe lambs were ovariectomized and were fed to maintain body weight (n=7; Fed) or feed-restricted to lose 20% of pre-study body weight (FR; n=8). Blood samples were taken weekly every 12 minutes for 4.5 hours via jugular venipuncture and plasma was stored at -20°C until assessment of LH using radioimmunoassay. Body weights were recorded weekly and feed amounts were adjusted to achieve desired body weights. Following blood collection at Week 13, animals were euthanized, brain tissue was perfused with 4% paraformaldehyde, and tissue containing the hypothalamus was collected for assessment of KNDy neuropeptide mRNA abundance by in situ hybridization (RNAscope). At Week 13, the average percent change in body weight was clearly evident (Fed, 7.35 +/- 2.2% vs FR, -21.36 +/- 0.9%), and mean LH concentrations were lower in FR ewes (10.70 +/- 3.1 ng/ml) compared to Fed controls (20.98 +/- 3.8 ng/ml). Data analyzed to date for kisspeptin, NKB, and dynorphin in the ARC show that feed restriction reduced the number of kisspeptin mRNA-expressing cells (Fed, 165 +/- 25 vs FR, 9.25 +/- 6), the number of NKB mRNA-expressing cells (Fed, 141 +/- 28 vs FR, 24 +/- 5), and the number of dynorphin mRNA-expressing cells (Fed, 109 +/- 41 vs FR, 29.5 +/- 24). Together, these findings demonstrate that chronic feed restriction suppresses KNDy neurons and supports a role for these key reproductive neurons in the central mechanism governing GnRH/LH secretion during undernutrition in female sheep.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 982 ◽  
Author(s):  
Tony M. Plant

This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.


Sign in / Sign up

Export Citation Format

Share Document