scholarly journals The neurobiological mechanism underlying hypothalamic GnRH pulse generation: the role of kisspeptin neurons in the arcuate nucleus

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 982 ◽  
Author(s):  
Tony M. Plant

This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.

F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 982 ◽  
Author(s):  
Tony M. Plant

This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.


2017 ◽  
Vol 114 (47) ◽  
pp. E10216-E10223 ◽  
Author(s):  
Jenny Clarkson ◽  
Su Young Han ◽  
Richard Piet ◽  
Timothy McLennan ◽  
Grace M. Kane ◽  
...  

The pulsatile release of luteinizing hormone (LH) is critical for mammalian fertility. However, despite several decades of investigation, the identity of the neuronal network generating pulsatile reproductive hormone secretion remains unproven. We use here a variety of optogenetic approaches in freely behaving mice to evaluate the role of the arcuate nucleus kisspeptin (ARNKISS) neurons in LH pulse generation. Using GCaMP6 fiber photometry, we find that the ARNKISS neuron population exhibits brief (∼1 min) synchronized episodes of calcium activity occurring as frequently as every 9 min in gonadectomized mice. These ARNKISS population events were found to be near-perfectly correlated with pulsatile LH secretion. The selective optogenetic activation of ARNKISS neurons for 1 min generated pulses of LH in freely behaving mice, whereas inhibition with archaerhodopsin for 30 min suppressed LH pulsatility. Experiments aimed at resetting the activity of the ARNKISS neuron population with halorhodopsin were found to reset ongoing LH pulsatility. These observations indicate the ARNKISS neurons as the long-elusive hypothalamic pulse generator driving fertility.


2021 ◽  
Author(s):  
Margaritis Voliotis ◽  
Xiao Feng Li ◽  
Ross De Burgh ◽  
Geffen Lass ◽  
Deyana Ivanova ◽  
...  

AbstractPulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons’ signalling properties. However, the precise mechanism of regulation remains mostly unknown. Here we investigate these mechanisms using a combination of mathematical and in-vivo approaches. We find that optogenetic stimulation of KNDy neurons stimulates pulsatile GnRH/LH secretion in estrous mice but inhibits it in diestrous mice. Our mathematical modelling suggests that this differential effect is due to well-orchestrated changes in neuropeptide signalling and the excitability of the KNDy population controlled via glutamate signalling. Guided by model predictions, we show that blocking glutamate signalling in the arcuate nucleus in diestrous animals inhibits LH pulses, and that optic stimulation of the KNDy population mitigates this inhibition. In estrous mice, disruption of glutamate signalling inhibits pulses generated via sustained low-frequency optic stimulation of the KNDy population, supporting the idea that the level of network excitability is critical for pulse generation. Our results reconcile previous puzzling findings regarding the estradiol-dependent effect that several neuromodulators have on the GnRH pulse generator dynamics. Therefore, we anticipate our model to be a cornerstone for a more quantitative understanding of the pathways via which gonadal steroids regulate GnRH secretion dynamics. Finally, our results could inform useful repurposing of drugs targeting the glutamate system in reproductive therapy.


2020 ◽  
Vol 9 (5) ◽  
pp. R124-R133 ◽  
Author(s):  
Rajae Talbi ◽  
Victor M Navarro

Kiss1 neurons are essential regulators of the hypothalamic–pituitary–gonadal (HPG) axis by regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic GnRH pulse generator driving fertility, also participate in the regulation of metabolism through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin (POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent developments, mainly derived from animal models, on the role of Kiss1 neurons in the regulation of energy balance, including food intake, energy expenditure and the influence of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways underlying this effect, and the existing controversies related to the anorexigenic action of kisspeptin in the different experimental models, are also discussed.


2019 ◽  
Vol 31 (11) ◽  
pp. 1682 ◽  
Author(s):  
S. E. Rietema ◽  
P. A. R. Hawken ◽  
C. J. Scott ◽  
M. N. Lehman ◽  
G. B. Martin ◽  
...  

Rams respond to acute nutritional supplementation by increasing the frequency of gonadotrophin-releasing hormone (GnRH) pulses. Kisspeptin neurons may mediate the effect of environmental cues on GnRH secretion, so we tested whether the ram response to nutrition involves activation of kisspeptin neurons in the arcuate nucleus (ARC), namely kisspeptin, neurokin B, dynorphin (KNDy) neurons. Rams were given extra lupin grain with their normal ration. Blood was sampled before feeding, and continued until animals were killed for collection of brain tissue at 2 or 11h after supplementation. In supplemented rams, LH pulse frequency increased after feeding, whereas control animals showed no change. Within the caudal ARC, there were more kisspeptin neurons in supplemented rams than in controls and a higher proportion of kisspeptin cells coexpressed Fos, regardless of the time the rams were killed. There were more Fos cells in the mid-ARC and mid-dorsomedial hypothalamus of the supplemented compared with control rams. No effect of nutrition was found on kisspeptin expression in the rostral or mid-ARC, or on GnRH expression in the preoptic area. Kisspeptin neurons in the caudal ARC appear to mediate the increase in GnRH and LH production due to acute nutritional supplementation, supporting the hypothesised role of the KNDy neurons as the pulse generator for GnRH.


Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4259-4269 ◽  
Author(s):  
Robert L. Goodman ◽  
Stanley M. Hileman ◽  
Casey C Nestor ◽  
Katrina L. Porter ◽  
John M. Connors ◽  
...  

Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus play a key role in GnRH pulse generation, with kisspeptin driving GnRH release and neurokinin B (NKB) and dynorphin acting as start and stop signals, respectively. In this study, we tested this hypothesis by determining the actions, if any, of four neurotransmitters found in KNDy neurons (kisspeptin, NKB, dynorphin, and glutamate) on episodic LH secretion using local administration of agonists and antagonists to receptors for these transmitters in ovariectomized ewes. We also obtained evidence that GnRH-containing afferents contact KNDy neurons, so we tested the role of two components of these afferents: GnRH and orphanin-FQ. Microimplants of a Kiss1r antagonist briefly inhibited LH pulses and microinjections of 2 nmol of this antagonist produced a modest transitory decrease in LH pulse frequency. An antagonist to the NKB receptor also decreased LH pulse frequency, whereas NKB and an antagonist to the receptor for dynorphin both increased pulse frequency. In contrast, antagonists to GnRH receptors, orphanin-FQ receptors, and the N-methyl-D-aspartate glutamate receptor had no effect on episodic LH secretion. We thus conclude that the KNDy neuropeptides act in the arcuate nucleus to control episodic GnRH secretion in the ewe, but afferent input from GnRH neurons to this area does not. These data support the proposed roles for NKB and dynorphin within the KNDy neural network and raise the possibility that kisspeptin contributes to the control of GnRH pulse frequency in addition to its established role as an output signal from KNDy neurons that drives GnRH pulses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yoshihisa Uenoyama ◽  
Mayuko Nagae ◽  
Hitomi Tsuchida ◽  
Naoko Inoue ◽  
Hiroko Tsukamura

Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Margaritis Voliotis ◽  
Xiao Feng Li ◽  
Ross Alexander De Burgh ◽  
Geffen Lass ◽  
Deyana Ivanova ◽  
...  

Pulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons' signalling properties. However, the precise mechanism of regulation remains mostly unknown. To better understand these mechanisms we start by perturbing the KNDy system at different stages of the estrous cycle using optogenetics. We find that optogenetic stimulation of KNDy neurons stimulates pulsatile GnRH/LH secretion in estrous mice but inhibits it in diestrous mice. These in-vivo results in combination with mathematical modelling suggest that the transition between estrus and diestrus is underpinned by well-orchestrated changes in neuropeptide signalling and in the excitability of the KNDy population controlled via glutamate signalling. Guided by model predictions, we show that blocking glutamate signalling in diestrous animals inhibits LH pulses, and that optic stimulation of the KNDy population mitigates this inhibition. In estrous mice, disruption of glutamate signalling inhibits pulses generated via sustained low-frequency optic stimulation of the KNDy population, supporting the idea that the level of network excitability is critical for pulse generation. Our results reconcile previous puzzling findings regarding the estradiol-dependent effect that several neuromodulators have on the GnRH pulse generator dynamics. Therefore, we anticipate our model to be a cornerstone for a more quantitative understanding of the pathways via which gonadal steroids regulate GnRH pulse generator dynamics. Finally, our results could inform useful repurposing of drugs targeting the glutamate system in reproductive therapy.


1983 ◽  
Vol 102 (4) ◽  
pp. 499-504 ◽  
Author(s):  
M. J. D'Occhio ◽  
B. D. Schanbacher ◽  
J. E. Kinder

Abstract. The acute castrate ram (wether) was used as an experimental model to investigate the site(s) of feedback on luteinizing hormone (LH) by testosterone, dihydrotestosterone and oestradiol. At the time of castration, wethers were implanted subdermally with Silastic capsules containing either crystalline testosterone (three 30 cm capsules), dihydrotestosterone (five 30 cm capsules) or oestradiol (one 6.5 cm capsule). Blood samples were taken at 10 min intervals for 6 h 2 weeks after implantation to determine serum steroid concentrations and to characterize the patterns of LH secretion. Pituitary LH response to exogenous LRH (5 ng/kg body weight) were also determined at the same time. The steroid implants produced serum concentrations of the respective hormones which were either one-third (testosterone) or two-to-four times (dihydrotestosterone, oestradiol) the levels measured in rams at the time of castration. Non-implanted wethers showed rhythmic pulses of LH (pulse interval 40–60 min) and had elevated LH levels (16.1 ± 1.6 ng/ml; mean ± se) 2 weeks after castration. All three steroids suppressed pulsatile LH release and reduced mean LH levels (to below 3 ng/ml) and pituitary LH responses to LRH. Inhibition of pulsatile LH secretion by all three steroids indicated that testosterone as well as its androgenic and oestrogenic metabolites can inhibit the LRH pulse generator in the hypothalamus. Additional feedback on the pituitary was indicated by the dampened LH responses to exogenous LRH.


1996 ◽  
Vol 135 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Joaquin Lado-Abeal ◽  
Jose L Liz ◽  
Carlos Rey ◽  
Manuel Febrero ◽  
Jose Cabezas-Cerrato

Lado-Abeal J, Liz JL, Rey C, Febrero M, Cabezas-Cerrato J. Effects of valproate-induced alteration of the GABAergic system on pulsatile luteinizing hormone secretion in ovariectomized women. Eur J Endocrinol 1996;135:293–8. ISSN 0804–4643 It is well established that valproate increases hypothalamic concentrations of γ-aminobutyric acid (GABA). Although little research has been done on the role of GABA in the control of pulsatile luteinizing hormone (LH) secretion in humans, our group recently found that administration of valproate had no significant effect on pulsatile LH secretion in late follicular and mid-late luteal phase normal women. However, the results of several studies of rats suggest that GABAergic regulation of LH secretion may depend on steroid levels. The objective of this work was to determine whether regular administration of sodium valproate inhibits pulsatile LH secretion in ovariectomized women. Twelve women who had undergone ovariectomy for causes other than malignant tumors were each studied in two 8 h sessions, in each of which blood samples were taken every 5 min. The first session was the control; for the second, 400 mg of sodium valproate was administered every 8 h during the seven preceding days and at 08.00 h and 14.00 h on the day of the study session. Serum valproate was determined by repolarization fluorescence spectrophotometry, and LH, estradiol and progesterone by radioimmunoassay. The serum LH series were subjected to a deconvolution procedure to reconstruct the pattern of pituitary LH secretion. Luteinizing hormone pulses were identified by the authors' nonparametric method. Control and post-valproate results were compared with regard to number of pulses, pulse duration, the quantity of LH secreted in each pulse, interpulse interval and mean serum LH level. There was no statistically significant difference between control and post-valproate results for any of the variables considered. It is concluded that sustained serum valproate levels do not alter pulsatile secretion of LH in ovariectomized women. This implies that, in humans, GABA is probably not a decisive factor in the regulation of the GnRH pulse generator. J Cabezas-Cerrato, Endocrinology and Nutrition Service, General Hospital of Galicia, c/Galeras s/n 15705, Santiago de Compostela, La Coruña, Spain


Sign in / Sign up

Export Citation Format

Share Document