Different Intracellular and Intranuclear Transport of Triiodothyronine Enantiomers in Rat Skeletal Myoblasts*

Endocrinology ◽  
1988 ◽  
Vol 123 (6) ◽  
pp. 2922-2929 ◽  
Author(s):  
ALFREDO PONTECORVI ◽  
MARK LAKSHMANAN ◽  
JACOB ROBBINS
2021 ◽  
Vol 12 (2) ◽  
pp. 30
Author(s):  
Shabir Hassan ◽  
Berivan Cecen ◽  
Ramon Peña-Garcia ◽  
Fernanda Roberta Marciano ◽  
Amir K. Miri ◽  
...  

Different strategies have been employed to provide adequate nutrients for engineered living tissues. These have mainly revolved around providing oxygen to alleviate the effects of chronic hypoxia or anoxia that result in necrosis or weak neovascularization, leading to failure of artificial tissue implants and hence poor clinical outcome. While different biomaterials have been used as oxygen generators for in vitro as well as in vivo applications, certain problems have hampered their wide application. Among these are the generation and the rate at which oxygen is produced together with the production of the reaction intermediates in the form of reactive oxygen species (ROS). Both these factors can be detrimental for cell survival and can severely affect the outcome of such studies. Here we present calcium peroxide (CPO) encapsulated in polycaprolactone as oxygen releasing microparticles (OMPs). While CPO releases oxygen upon hydrolysis, PCL encapsulation ensures that hydrolysis takes place slowly, thereby sustaining prolonged release of oxygen without the stress the bulk release can endow on the encapsulated cells. We used gelatin methacryloyl (GelMA) hydrogels containing these OMPs to stimulate survival and proliferation of encapsulated skeletal myoblasts and optimized the OMP concentration for sustained oxygen delivery over more than a week. The oxygen releasing and delivery platform described in this study opens up opportunities for cell-based therapeutic approaches to treat diseases resulting from ischemic conditions and enhance survival of implants under severe hypoxic conditions for successful clinical translation.


1996 ◽  
Vol 18 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Carol E. Torgan ◽  
Mary C. Reedy ◽  
William E. Kraus

2014 ◽  
Vol 96 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Ieva Antanavičiūtė ◽  
Eglė Ereminienė ◽  
Vaidas Vysockas ◽  
Mindaugas Račkauskas ◽  
Vilius Skipskis ◽  
...  

2004 ◽  
Vol 95 ◽  
pp. S61
Author(s):  
T. Siminiak ◽  
R. Kalawski ◽  
D. Fiszer ◽  
O. Jerzykowska ◽  
J. Rzeźniczak ◽  
...  

1984 ◽  
Vol 99 (4) ◽  
pp. 1398-1404 ◽  
Author(s):  
C Decker ◽  
R Greggs ◽  
K Duggan ◽  
J Stubbs ◽  
A Horwitz

Neff et al. (1982, J. Cell Biol., 95:654-666) have described a monoclonal antibody, CSAT, directed against a cell surface antigen that participates in the adhesion of skeletal muscle to extracellular matrices. We used the same antibody to compare and parse the determinants of adhesion and morphology on myogenic and fibrogenic cells. We report here that the antigen is present on skeletal and cardiac muscle and on tendon, skeletal, dermal, and cardiac fibroblasts; however, its contribution to their morphology and adhesion is different. The antibody produces large alterations in the morphology and adhesion of skeletal myoblasts and tendon fibroblasts; in contrast, its effects on the cardiac fibroblasts are not readily detected. The effects of CSAT on the other cell types, i.e., dermal and skeletal fibroblasts, cardiac muscle, 5-bromodeoxyuridine-treated skeletal muscle, lie between these extremes. The effects of CSAT on the skeletal myoblasts depends on the calcium concentration in the growth medium and on the culture age. We interpret these differential responses to CSAT as revealing differences in the adhesion of the various cells to extracellular matrices. This interpretation is supported by parallel studies using quantitative assays of cell-matrix adhesion. The likely origin of these adhesive differences is the progressive display of different kinds of adhesion-related molecules and their organizational complexes on increasingly adhesive cells. The antigen to which CSAT is directed is present on all of the above cells and thus appears to be a lowest common denominator of their adhesion to extracellular matrices.


2013 ◽  
Vol 126 (22) ◽  
pp. 5178-5188 ◽  
Author(s):  
S.-M. Jang ◽  
J.-W. Kim ◽  
D. Kim ◽  
C.-H. Kim ◽  
J.-H. An ◽  
...  
Keyword(s):  

Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
Ken Suzuki ◽  
Ryszard T. Smolenski ◽  
Jay Jayakumar ◽  
Bari Murtuza ◽  
Nigel J. Brand ◽  
...  

Background —Graft survival after skeletal myoblast transplantation is affected by various pathological processes caused by environmental stress. Heat shock is known to afford protection of several aspects of cell metabolism and function. We hypothesized that prior heat shock treatment of graft cells would improve their survival after cell transplantation. Methods and Results —L6 rat skeletal myoblasts expressing β-galactosidase (β-gal) were subjected to heat shock (42°C, 1 hour). Increased expression of heat shock protein 72 was detected 24 hours later in the heat-shocked cells. After hypoxia-reoxygenation in vitro, lactate dehydrogenase leakage was significantly attenuated in the heat-shocked cells; in addition, the percentage of early apoptosis was lower in this group measured by flow cytometry with annexin V staining. For the in vivo study, 1×10 6 heat-shocked (hsCTx) or normal-cultured (CTx) myoblasts were infused into the explanted rat hearts through the coronary artery followed by heterotopic heart transplantation. β-gal activity was significantly higher in the hsCTx group after cell transplantation, with an estimated 8×10 6 surviving cells per heart in the hsCTx group and 5×10 6 cells in the CTx group on day 28. Discrete loci of grafted cells were globally observed in the myocardium of the hsCTx and CTx groups, with a higher frequency in the hsCTx group. Surviving myoblasts occasionally differentiated into myotubes and had integrated with the native cardiomyocytes. Conclusions —Heat-shocked skeletal myoblasts demonstrated improved tolerance to hypoxia-reoxygenation insult in vitro and enhanced survival when grafted into the heart. Heat shock treatment could be useful in improving graft cell survival in cell transplantation.


Author(s):  
Thoru Pederson ◽  
Joan C Politz

Sign in / Sign up

Export Citation Format

Share Document