cell matrix adhesion
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 63)

H-INDEX

44
(FIVE YEARS 7)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yelena Y Bernadskaya ◽  
Haicen Yue ◽  
Calina Copos ◽  
Lionel Christiaen ◽  
Alex Mogilner

Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Alan C. Rapraeger

Receptor tyrosine kinases (RTKs) and integrin matrix receptors have well-established roles in tumor cell proliferation, invasion and survival, often functioning in a coordinated fashion at sites of cell-matrix adhesion. Central to this coordination are syndecans, another class of matrix receptor, that organize RTKs and integrins into functional units, relying on docking motifs in the syndecan extracellular domains to capture and localize RTKs (e.g., EGFR, IGF-1R, VEGFR2, HER2) and integrins (e.g., αvβ3, αvβ5, α4β1, α3β1, α6β4) to sites of adhesion. Peptide mimetics of the docking motifs in the syndecans, called “synstatins”, prevent assembly of these receptor complexes, block their signaling activities and are highly effective against tumor cell invasion and survival and angiogenesis. This review describes our current understanding of these four syndecan-coupled mechanisms and their inhibitory synstatins (SSTNIGF1R, SSTNVEGFR2, SSTNVLA-4, SSTNEGFR and SSTNHER2).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chrystian Junqueira Alves ◽  
Rafael Dariolli ◽  
Jonathan Haydak ◽  
Sangjo Kang ◽  
Theodore Hannah ◽  
...  

AbstractDuring morphogenesis, molecular mechanisms that orchestrate biomechanical dynamics across cells remain unclear. Here, we show a role of guidance receptor Plexin-B2 in organizing actomyosin network and adhesion complexes during multicellular development of human embryonic stem cells and neuroprogenitor cells. Plexin-B2 manipulations affect actomyosin contractility, leading to changes in cell stiffness and cytoskeletal tension, as well as cell-cell and cell-matrix adhesion. We have delineated the functional domains of Plexin-B2, RAP1/2 effectors, and the signaling association with ERK1/2, calcium activation, and YAP mechanosensor, thus providing a mechanistic link between Plexin-B2-mediated cytoskeletal tension and stem cell physiology. Plexin-B2-deficient stem cells exhibit premature lineage commitment, and a balanced level of Plexin-B2 activity is critical for maintaining cytoarchitectural integrity of the developing neuroepithelium, as modeled in cerebral organoids. Our studies thus establish a significant function of Plexin-B2 in orchestrating cytoskeletal tension and cell-cell/cell-matrix adhesion, therefore solidifying the importance of collective cell mechanics in governing stem cell physiology and tissue morphogenesis.


2021 ◽  
Author(s):  
Ana E. González Wusener ◽  
Ángela González ◽  
María E. Perez Collado ◽  
Melina R. Maza ◽  
Ignacio J. General ◽  
...  

Protein tyrosine phosphatase 1B (PTP1B) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here we used Bimolecular Fluorescence Complementation (BiFC) assays in combination with a substrate trapping mutant of PTP1B to directly examine whether relevant phosphotyrosines on paxillin and FAK are substrates of the phosphatase in the context of cell-matrix adhesion sites. We find that formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin and the localization of the focal adhesion kinase (FAK) at adhesion sites. In addition, we find that PTP1B specifically targets the Y925 on the focal adhesion target (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicates that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle, and its interaction with paxillin at adhesion sites.


2021 ◽  
Author(s):  
Mostafa Bakhti ◽  
Aimée Bastidas-Ponce ◽  
Sophie Tritschler ◽  
Marta Tarquis-Medina ◽  
Eva Nedvedova ◽  
...  

AbstractEpithelial cell egression is important for organ development, but also drives cancer metastasis. Better understandings of pancreatic epithelial morphogenetic programs generating islets of Langerhans aid to diabetes therapy. Here we identify the Ca2+-independent atypical Synaptotagmin 13 (Syt13) as a key driver of endocrine cell egression and islet formation. We detected upregulation of Syt13 in endocrine precursors that correlates with increased expression of unique cytoskeletal components. High-resolution imaging reveals a previously unidentified apical-basal to front-rear repolarization during endocrine cell egression. Strikingly, Syt13 interacts with acetylated tubulin and phosphatidylinositol phospholipids and localizes to the leading-edge of egressing cells. Knockout of Syt13 impairs endocrine cell egression and skews the α- to-β-cell ratio. Mechanistically, Syt13 regulates endocytosis to remodel the basement membrane and cell-matrix adhesion at the leading-edge of egressing endocrine cells. Altogether, these findings implicate an unexpected role of Syt13 in regulating cell polarity to orchestrate endocrine cell egression and islet morphogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Amélie Vernale ◽  
Maria Mandela Prünster ◽  
Fabio Marchianò ◽  
Henry Debost ◽  
Nicolas Brouilly ◽  
...  

Abstract Background The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell–cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention. Results To get insights into the early evolution of epithelial morphogenesis, we focused on morphogenic characteristics of the homoscleromorph sponge Oscarella lobularis. Homoscleromorpha are a sponge class with a typical basement membrane and adhaerens-like junctions unknown in other sponge classes. We took advantage of the dynamic context provided by cell dissociation-reaggregation experiments to explore morphogenetic processes in epithelial cells in a non-bilaterian lineage by combining fluorescent and electron microscopy observations and RNA sequencing approaches at key time-points of the dissociation and reaggregation processes. Conclusions Our results show that part of the molecular toolkit involved in the loss and restoration of epithelial features such as cell–cell and cell–matrix adhesion is conserved between Homoscleromorpha and Bilateria, suggesting their common role in the last common ancestor of animals. In addition, sponge-specific genes are differently expressed during the dissociation and reaggregation processes, calling for future functional characterization of these genes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Kawata ◽  
Koji Muramatsu ◽  
Namiko Shishito ◽  
Naoki Ichikawa-Tomikawa ◽  
Takuma Oishi ◽  
...  

AbstractEMI Domain Containing 1 (EMID1) was identified as a potential candidate metastasis-promoting gene. We sought to clarify the molecular function of EMID1 and the protein expression. Overexpression and knockdown studies using mouse tumor cell lines identified two novel functions of EMID1: intracellular signaling involving enhancement of cell growth via cell cycle promotion and suppression of cell motility, and inhibition of cell–matrix adhesion by extracellularly secreted EMID1. EMID1 deposited on the culture dish induced self-detachment of cells that overexpressed the protein and inhibited adhesion of additionally seeded cells. This multifunctional property involving both intracellular signaling and the extracellular matrix suggests that EMID1 may be a matricellular proteins. Expression analysis using immunohistochemical staining revealed expression of EMID1 that was limited to chief cells of the gastric fundic gland and β cells of the pancreatic islets in normal adult human tissues, implying cell-specific functions of this molecule. In addition, increased expression of EMID1 protein detected in some cases of human cancers implies that EMID1 might be a new therapeutic target for cancer treatment.


2021 ◽  
Author(s):  
James Varani ◽  
Shannon D McClintock ◽  
Muhammad N Aslam

Background and aims: Cell-cell adhesion structures (desmosomes and, especially, tight junctions) are known to play important roles in control of transepithelial permeability in the colon. The involvement of cell-matrix interactions in permeability control is less clear. The goals of the present study were to: i) determine if disruption of colon epithelial cell interactions with the extracellular matrix alters permeability control and ii) determine if increasing the elaboration of protein components of cell-matrix adhesion complexes improves permeability control and mitigates the effects of cell-matrix disruption. Methods: Human colon organoids were interrogated for transepithelial electrical resistance (TEER) under control conditions (0.25 mM calcium) and in the presence of Aquamin®, a multi-mineral product, at a level providing 1.5 mM calcium. The effects of Aquamin® on cell-matrix adhesion protein expression were determined in a proteomic screen and by Western blotting. In parallel, TEER was assessed in the presence of a function-blocking antibody directed at an epitope in the C-terminal region of laminin α3 chain. Results: Treatment of colon organoids with Aquamin® increased the expression of multiple basement membrane and hemidesmosomal proteins as well as keratin 8 and 18. TEER values were higher in the presence of Aquamin® than they were under control conditions. Anti-laminin antibody reduced TEER values under all conditions but was most effective in the absence of Aquamin®, where laminin expression was low and TEER values were lower to begin with. Conclusions: These findings provide evidence that cell-matrix interactions contribute to permeability control in the colon. They suggest that the elaboration of proteins important to cell-matrix interactions can be increased in human colon organoids by exposure to a multi-mineral natural product. Increasing the elaboration of such proteins may help to mitigate the consequences of disrupting cell-matrix interactions on permeability control.


2021 ◽  
Author(s):  
Leonie van Steijn ◽  
Clément Sire ◽  
Loïc Dupré ◽  
Guy Theraulaz ◽  
Roeland M.H. Merks

Lymphocytes have been described to perform different motility patterns such as Brownian random walks, persistent random walks, and Lévy walks. Depending on the conditions, such as confinement or the distribution of target cells, either Brownian or Lévy walks lead to more efficient interaction with the targets. The diversity of these motility patterns may be explained by an adaptive response to the surrounding extracellular matrix (ECM). Indeed, depending on the ECM composition, lymphocytes either display a floating motion without attaching to the ECM, or sliding and stepping motion with respectively continuous or discontinuous attachment to the ECM, or pivoting behaviour with sustained attachment to the ECM. Moreover, on the long term, lymphocytes either perform a persistent random walk or a Brownian-like movement depending on the ECM composition. How the ECM affects cell motility is still incompletely understood. Here, we integrate essential mechanistic details of the lymphocyte-matrix adhesions and lymphocyte intrinsic cytoskeletal induced cell propulsion into a Cellular Potts model (CPM). We show that the combination of \textit{de novo} cell-matrix adhesion formation, adhesion growth and shrinkage, adhesion rupture, and feedback of adhesions onto cell propulsion recapitulates multiple lymphocyte behaviours, for different lymphocyte subsets and various substrates. With an increasing attachment area and increased adhesion strength, the cells' speed and persistence decreases. Additionally, the model can predict short-term persistent with long-term subdiffusive motility, showing a pivoting motion. For small adhesion areas, we observe that the spatial distribution of adhesions influences cell motility. Small adhesions at the front allow for more persistent motion than larger clusters at the back, despite a similar total adhesion area. In conclusion, we present an integrated framework to simulate the effects of ECM proteins on cell-matrix adhesion dynamics. The model reveals a sufficient set of principles explaining the plasticity of lymphocyte motility.


Sign in / Sign up

Export Citation Format

Share Document