Ovarian steroids modulate endothelin-induced luteinizing hormone secretion from cultured rat pituitary cells.

Endocrinology ◽  
1993 ◽  
Vol 133 (6) ◽  
pp. 2632-2638 ◽  
Author(s):  
O Ortmann ◽  
D Wassmann ◽  
S S Stojilkovic ◽  
K J Catt ◽  
K D Schulz ◽  
...  
1986 ◽  
Vol 111 (3) ◽  
pp. 312-320 ◽  
Author(s):  
G. Emons ◽  
O. Ortmann ◽  
U. Fingscheidt ◽  
P. Ball ◽  
R. Knuppen

Abstract. Dispersed pituitary cells from adult female rats were preincubated for different time periods (0– 12 h) in the absence or presence of 10−9 moestradiol (E2) or 4-hydroxyoestradiol (4-OHE2). Then the media were changed and the cells incubated for 4 h with either vehicle, or E2, or 4-OHE2 and additionally with different concentrations (10−11– 10−7 m) of gonadotrophin-releasing hormone (GnRH). Treatment of pituitary cells with E2 for 4 h (i.e. no preincubation with E2) significantly decreased the LH-response to GnRH at concentrations ≥ 10−10 m of the decapeptide. During a transition time of approximately 10 h (i.e. in cultures preincubated with E2 or vehicle for 2, 4, 6 or 8 h and then coincubated with E2 or vehicle and GnRH for 4 h) no differences between E2-and vehicle-treated cultures were observed. After 14 and 16 h of E2-treatment (i.e. 10 or 12 h preincubation and 4 h coincubation with GnRH) the LH-responses to GnRH in these cultures were significantly higher than in the respective controls. A nearly identical reaction pattern was observed when 4-OHE2 was used instead of E2. In a second series of experiments dispersed rat pituitary cells were suspended in a carrier gel and continuously perifused with medium, using small chromatography columns. When these cells were exposed for 4 min to 10−9 m GnRH at 60 or 48 min intervals, they reacted with reproducible pulsatile LH-discharges during at least 6 subsequent stimuli with the decapeptide. When E2 (10−9 m) was added to the perifusion medium, the LH-responses to GnRH were significantly reduced, starting 36 min after the onset of E2-treatment. These data indicate: 1) In the rat, the negative oestrogen effect is at least in part directly mediated at the pituitary level. 2) The sensitizing effect of oestrogens on rat gonadotrophs to GnRH is significant already after 14 to 16 h. 3) E2 and the catecholoestrogen 4-OHE2 have the same effects in this system. 4) The negative E2-effect on GnRH-induced LH-release is significant after only 36 min, a finding bringing up the question of a non-genomic mechanism.


1970 ◽  
Vol 46 (1) ◽  
pp. 1-7 ◽  
Author(s):  
S. TALEISNIK ◽  
M. E. VELASCO ◽  
J. J. ASTRADA

SUMMARY The influence that the interruption of the neural afferents to the hypothalamus exerts on ovulation and on the release of luteinizing hormone (LH) was studied in the rat. Animals with retrochiasmatic sections interrupting the neural connexions between the medial hypothalamus and the preoptic area (POA) showed constant oestrus and failed to ovulate. Animals in which the dorsal neural afferents to the POA were transected had oestrous cycles and ovulated normally. The positive feedback effect of progesterone on LH release in spayed animals primed either with 20 μg. oestradiol benzoate or 2·5 mg. testosterone propionate 3 days before was studied. Transection of the dorsal afferents to the POA favoured an increase in plasma LH, but in animals with retrochiasmatic sections the response was abolished. However, the negative feedback effect of ovarian steroids operated after both types of transection because an increase in plasma LH occurred after ovariectomy. It is concluded that the negative feedback effect of ovarian steroids acts on the medial hypothalamus which can maintain a tonic release of gonadotrophins in the absence of steroids. In contrast, the POA involved in the positive feedback effect of progesterone is concerned with the phasic release of LH.


1995 ◽  
Vol 184 (2) ◽  
pp. 109-112 ◽  
Author(s):  
Atsuhiko Hattori ◽  
Damon C. Herbert ◽  
Mary K. Vaughan ◽  
Ken Yaga ◽  
Russel J. Reiter

1996 ◽  
Vol 134 (2) ◽  
pp. 236-242 ◽  
Author(s):  
Deokbae Park ◽  
Minseok cheon ◽  
Changmee Kim ◽  
Kyungjin Kim ◽  
Kyungza Ryu

Park D, Cheon M, Kim C, Kim K, Ryu K. Progesterone together with estradiol promotes luteinizing hormoneβ-subunit mRNA stability in rat pituitary cells in vitro. Eur J Endocrinol 1996;134:236–42. ISSN 0804–4643 The present study examined the role of ovarian steroids, estradiol and/or progesterone in the regulation of luteinizing hormone β-subunit (LH-β) mRNA levels and LH release in the rat anterior pituitary cells cultured in vitro. When estradiol (10 nmol/l and/or progesterone (100 nmol/l) were added to the cultures, neither estradiol or progesterone nor both together altered the basal LH-β mRNA levels or LH release. Continuous exposure to gonadotropin-releasing hormone (GnRH, 0.2 nmol/l) for 24 h markedly induced LH-β mRNA accumulation, and in this experimental condition, progesterone alone and progesterone + estradiol further augmented GnRH-induced LH-β mRNA levels and LH release. Then we explored further the possibility that ovarian steroids are involved in modulating LH-β mRNA stability in cultured rat pituitary cells where transcription was inhibited by actinomycin D. Anterior pituitary cells were preincubated with GnRH (0.2 nmol/l) for 16 h and, after removing GnRH from culture medium, the cells were incubated further in the presence of actinomycin D (5 μmol/l) for 24 h. The LH-β mRNA levels gradually declined to about 30% of the control values (zero time point after GnRH removal) in a time-dependent manner. During this period, either progesterone alone or progesterone + estradiol clearly blocked the degradation of LH-β mRNA species. These results indicate that ovarian steroids promote LH-β mRNA stability, thereby contributing to the maintenance of GnRH-stimulated LH-β mRNA levels. Kyungza Ryu, Department of Pharmacology, College of Medicine, Yonsei University, 120-749, Seoul, Korea


Sign in / Sign up

Export Citation Format

Share Document