scholarly journals Relationship among cellular diacylglycerol, sphingosine formation, protein kinase C activity, and parathyroid hormone secretion from dispersed bovine parathyroid cells.

Endocrinology ◽  
1996 ◽  
Vol 137 (6) ◽  
pp. 2473-2479 ◽  
Author(s):  
C McKay ◽  
A Miller
1988 ◽  
Vol 254 (1) ◽  
pp. E63-E70 ◽  
Author(s):  
J. J. Morrissey

The influence of phorbol myristate acetate (PMA), an activator of protein kinase c, on the secretion of parathyroid hormone from collagenase-dispersed bovine parathyroid cells was tested. The cells were incubated at low (0.5 mM) or high (2.0 mM) concentrations of calcium in the medium, and the hormone secreted into the medium was measured by a radioimmunoassay that recognizes both intact and C-terminal fragments of hormone. At low calcium, the secretory rate averaged 32 +/- 3.8 ng.h-1.(10(5) cells)-1. The addition of 1.6 microM PMA did not affect secretion. At high calcium there was a significant suppression of secretion by 38% to 19.8 +/- 3 ng.h-1.(10(5) cells)-1. The addition of 1.6 microM PMA significantly stimulated hormone secretion to 35.8 +/- 8 ng.h-1.(10(5) cells)-1, a rate indistinguishable from low calcium. This stimulatory effect of PMA at high calcium was seen at PMA concentrations as low as 1.6 nM, did not occur with a biologically inactive 4 alpha-isomer of phorbol ester, and was independent of changes in cellular adenosine 3',5'-cyclic monophosphate levels. Examination of 32P-labeled phosphoproteins by two-dimensional gel electrophoresis revealed acidic proteins of approximately 20,000 and 100,000 Da that were phosphorylated at low and high calcium + 1.6 microM PMA but not at high calcium alone. The protein kinase c activity associated with the membrane fraction of parathyroid cells significantly decreased 40% when the cells were incubated at high vs. low calcium. The data suggest that calcium may regulate parathyroid hormone secretion through changes in protein kinase c activity of the membrane fraction of the cell and protein phosphorylation.


1989 ◽  
Vol 122 (1) ◽  
pp. 213-218 ◽  
Author(s):  
R. Muff ◽  
J. A. Fischer

ABSTRACT The secretion of parathyroid hormone (PTH) is inversely related to the extracellular Ca2+ concentration (Cae2+). To test the hypothesis that a Ca2+ sensor on the surface of parathyroid cells is involved in Ca2+-regulated PTH secretion, limited trypsinization of bovine parathyroid cells was carried out. Treatment with trypsin (1·1–10 mg/ml) inhibited, in a dose-dependent manner, PTH secretion stimulated by lowering Cae2+ from 2·0 to 0·5 mmol/l. In control cells, activation of protein kinase C with 12-O-tetradecanoylphorbol-13-acetate (TPA) enhanced PTH secretion at 2·0 mmol Cae2+/1 but not at 0·5 mmol Cae2+/1. In trypsinized cells, however, TPA enhanced PTH secretion at both 0·5 and 2·0 mmol Cae2+/1. Isoproterenol-stimulated PTH secretion was maintained in trypsinized cells, but reduced cyclic AMP production revealed that some β-adrenergic receptors were destroyed. The cytosolic free Ca2+ concentration (Cai2+), as measured with fura-2, was raised within seconds in response to increasing Cae2+ from 0·5 to 2·0 mmol/l and was then lowered within 1 min to a sustained plateau; the changes were the same in trypsinized and control cells. In conclusion, trypsinization of parathyroid cells abolished Ca2+-regulated PTH secretion without affecting Cai2+. Journal of Endocrinology (1989) 122, 213–218


1994 ◽  
Vol 267 (3) ◽  
pp. E429-E438
Author(s):  
F. K. Racke ◽  
E. F. Nemeth

The role of protein kinase C (PKC) in regulating cytosolic Ca2+ concentrations ([Ca2+]i) and parathyroid hormone (PTH) secretion was studied in bovine parathyroid cells rendered deficient in PKC activity by incubation with phorbol 12-myristate 13-acetate (PMA). Pretreatment with PMA caused a time- and concentration-dependent loss of functional PKC activity as assessed by the failure of [Ca2+]i and PTH secretion to respond to the subsequent addition of PKC activators or the inhibitor staurosporine. Pretreatment for 24 h with 1 microM PMA caused a loss of 85% of the total and 98% of the cytosolic PKC activity. Cells so pretreated were considered to be "PKC downregulated." Increasing the concentration of extracellular Ca2+ or Mg2+ caused corresponding increases in [Ca2+]i that were similar in control and in PKC-downregulated cells. PTH secretion regulated by extracellular Ca2+ or Mg2+ was likewise similar in control and PKC-downregulated cells. Stimulus-secretion coupling is thus unimpaired in parathyroid cells deficient in PKC activity. Cytosolic Ca2+ responses remained depressed in cells incubated for 24 h with low concentrations of PMA (30 or 100 nM). However, under these conditions, extracellular Ca2+ still suppressed PTH secretion similarly to control cells. These results reveal a dissociation between cytosolic Ca2+ and PTH secretion and suggest that signals other than cytosolic Ca2+ are involved in the regulation of PTH secretion.


1992 ◽  
Vol 126 (6) ◽  
pp. 505-509 ◽  
Author(s):  
Peter Ridefelt ◽  
Peter Nygren ◽  
Per Hellman ◽  
Rolf Larsson ◽  
Jonas Rastad ◽  
...  

Effects of the protein kinase C activating phorbol ester 12-O-tetradecanoyl phorbol 13-acetate and the inhibitor 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine (H-7) on parathyroid hormone (PTH) release were studied in normal bovine and pathological human parathyroid cells. An increase of extracellular Ca2+ from 0.5 to 3.0 mmol/l inhibited PTH release by 60% in the bovine cells with half maximal effect (ED50) at 1.31 mmol/l. This inhibition reached less than 50% in the cells from patients with primary and uremic hyperparathyroidism, and the ED50 values were 1.49 and 1.42 mmol/l, respectively. The phorbol ester (0.1 μmol/l) made secretion insensitive to changes of extracellular Ca2+, an action counteracted by H-7 (50 μmol/l) in the bovine cells, whereas H-7 alone had no effects. The phorbol ester and H-7 had opposite actions on regulation of PTH release also from cells from patients with hyperparathyroidism. However, in pathological cells H-7 alone improved Ca2+ inhibition of secretion by stimulating release in low Ca2+ concentrations and decreasing the ED50 values. The magnitude of changes in ED50 values by H-7 increased with the severity of the secretory disturbance of the pathological cells. The results indicate that increased protein kinase C activity may be a factor of importance in the pathophysiology of hyperparathyroidism.


Sign in / Sign up

Export Citation Format

Share Document