Comparison of Subthalamic Nucleus and Globus Pallidus Deep Brain Stimulation in Parkinson’s Disease: A Systematic Review

Author(s):  
Azari H ◽  

Background: Deep Brain Stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson’s Disease (PD). The two most common sites for DBS are the Subthalamic Nucleus (STN) and Globus Pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared. Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson’s Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3) at least five participants in each group; (4) conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS III scores. Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.

2021 ◽  
Author(s):  
Hushyar Azari

Abstract Background: Deep brain stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson's disease (PD). The two most common sites for DBS are the subthalamic nucleus (STN) and globus pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared.Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson's Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3)at least five participants in each group; (4)conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale.Results: 3577 potentially relevant articles were identified,3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS ш scores.Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zixiao Yin ◽  
Yutong Bai ◽  
Liangying Zou ◽  
Xin Zhang ◽  
Huimin Wang ◽  
...  

Abstract The effect of subthalamic nucleus deep brain stimulation (STN-DBS) on balance function in patients with Parkinson’s disease (PD) and the potential outcome predictive factors remains unclear. We retrospectively included 261 PD patients who underwent STN-DBS and finished the 1-month follow-up (M1) assessment in the explorative set for identifying postoperative balance change predictors, and 111 patients who finished both the M1 and 12-month follow-up (M12) assessment in the validation set for verifying the identified factors. Motor and balance improvement were evaluated through the UPDRS-III and the Berg balance scale (BBS) and pull test (PT), respectively. Candidate predictors of balance improvement included age, disease duration, motor subtypes, baseline severity of PD, cognitive status, motor and balance response to levodopa, and stimulation parameters. In the off-medication condition, STN-DBS significantly improved BBS and PT performance in both the M1 and M12, in both datasets. While in the on-medication condition, no significant balance improvement was observed. Higher preoperative BBS response to levodopa was significantly associated with larger postoperative off-medication, but not on-medication, BBS (p < 0.001) and PT (p < 0.001) improvement in both the M1 and M12. BBS subitems 8, 9, 11, 13, and 14 were the major contributors to the prediction of balance improvement after STN-DBS. STN-DBS improves short-term off-medication, but not on-medication, balance function assessed through BBS and PT. Preoperative BBS response to levodopa best predicts postoperative off-medication balance improvement. For patients who manifested severe balance problems, a levodopa challenge test on BBS or the short version of BBS is recommended.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yu Diao ◽  
Yutong Bai ◽  
Tianqi Hu ◽  
Zixiao Yin ◽  
Huangguang Liu ◽  
...  

Pain from Parkinson's disease (PD) is a non-motor symptom affecting the quality of life and has prevalence of 20–80%. However, it is unclear whether subthalamic nucleus deep brain stimulation (STN–DBS), a well-established treatment for PD, is effective forPD-related pain. Thus, the objective of this meta-analysis was to investigate the efficacy of STN-DBS on PD-related pain and explore how its duration affects the efficacy of STN-DBS. A systematic search was performed using PubMed, Embase, and the Cochrane Library. Nine studies included numerical rating scale (NRS), visual analog scale (VAS), or non-motor symptom scale (NMSS) scores at baseline and at the last follow-up visit and therefore met the inclusion criteria of the authors. These studies exhibited moderate- to high-quality evidence. Two reviewers conducted assessments for study eligibility, risk of bias, data extraction, and quality of evidence rating. Random effect meta-analysis revealed a significant change in PD-related pain as assessed by NMSS, NRS, and VAS (P &lt;0.01). Analysis of the short and long follow-up subgroups indicated delayed improvement in PD-related pain. These findings (a) show the efficacy of STN-DBS on PD-related pain and provide higher-level evidence, and (b) implicate delayed improvement in PD-related pain, which may help programming doctors with supplement selecting target and programming.Systematic Review Registration: This study is registered in Open Science Framework (DOI: 10.17605/OSF.IO/DNM6K).


2021 ◽  
Vol 15 ◽  
Author(s):  
Lila H. Levinson ◽  
David J. Caldwell ◽  
Jeneva A. Cronin ◽  
Brady Houston ◽  
Steve I. Perlmutter ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective tool for treating medically refractory Parkinson’s disease (PD), but its neural mechanisms remain debated. Previous work has demonstrated that STN DBS results in evoked potentials (EPs) in the primary motor cortex (M1), suggesting that modulation of cortical physiology may be involved in its therapeutic effects. Due to technical challenges presented by high-amplitude DBS artifacts, these EPs are often measured in response to low-frequency stimulation, which is generally ineffective at PD symptom management. This study aims to characterize STN-to-cortex EPs seen during clinically relevant high-frequency STN DBS for PD. Intraoperatively, we applied STN DBS to 6 PD patients while recording electrocorticography (ECoG) from an electrode strip over the ipsilateral central sulcus. Using recently published techniques, we removed large stimulation artifacts to enable quantification of STN-to-cortex EPs. Two cortical EPs were observed – one synchronized with DBS onset and persisting during ongoing stimulation, and one immediately following DBS offset, here termed the “start” and the “end” EPs respectively. The start EP is, to our knowledge, the first long-latency cortical EP reported during ongoing high-frequency DBS. The start and end EPs differ in magnitude (p &lt; 0.05) and latency (p &lt; 0.001), and the end, but not the start, EP magnitude has a significant relationship (p &lt; 0.001, adjusted for random effects of subject) to ongoing high gamma (80–150 Hz) power during the EP. These contrasts may suggest mechanistic or circuit differences in EP production during the two time periods. This represents a potential framework for relating DBS clinical efficacy to the effects of a variety of stimulation parameters on EPs.


CNS Spectrums ◽  
2016 ◽  
Vol 21 (3) ◽  
pp. 258-264 ◽  
Author(s):  
Isabel Hindle Fisher ◽  
Hardev S. Pall ◽  
Rosalind D. Mitchell ◽  
Jamilla Kausar ◽  
Andrea E. Cavanna

ObjectiveApathy has been reported as a possible adverse effect of deep brain stimulation of the subthalamic nucleus (STN-DBS). We investigated the prevalence and severity of apathy in 22 patients with Parkinson’s disease (PD) who underwent STN-DBS, as well as the effects of apathy on quality of life (QOL).MethodsAll patients were assessed with the Lille Apathy Rating Scale (LARS), the Apathy Scale (AS), and the Parkinson’s Disease Questionnaire and were compared to a control group of 38 patients on pharmacotherapy alone.ResultsThere were no significant differences in the prevalence or severity of apathy between patients who had undergone STN-DBS and those on pharmacotherapy alone. Significant correlations were observed between poorer QOL and degree of apathy, as measured by the LARS (p<0.001) and the AS (p=0.021). PD-related disability also correlated with both apathy ratings (p<0.001 and p=0.017, respectively).ConclusionOur findings suggest that STN-DBS is not necessarily associated with apathy in the PD population; however, more severe apathy appears to be associated with a higher level of disability due to PD and worse QOL, but no other clinico-demographic characteristics.


Neurosurgery ◽  
2010 ◽  
Vol 67 (4) ◽  
pp. 1088-1093 ◽  
Author(s):  
Helen Brontë-Stewart ◽  
Stephanie Louie ◽  
Sara Batya ◽  
Jaimie M Henderson

Abstract BACKGROUND: Image-guided neuronavigation has largely replaced stereotactic frames when precise, real-time anatomic localization is required during neurosurgical procedures. However, some procedures, including placement of deep-brain stimulation (DBS) leads for the treatment of movement disorders, are still performed using frame-based stereotaxy. Despite the demonstration of comparable accuracy between frame-based and “frameless” image-guided approaches, the clinical efficacy of frameless DBS placement has never been reported. OBJECTIVE: To analyze the outcomes of subthalamic nucleus (STN) DBS using the frameless technique for the treatment of Parkinson's disease (PD). METHODS: Of 31 subjects (20 men) with PD for 10 ± 4 years, 28 had bilateral STN DBS and 3 had unilateral STN DBS. The Unified Parkinson's Disease Rating Scale (UPDRS) motor scale (III) and total medication doses were assessed before surgery on and off medication and off medication/ON DBS (off/ON) after 6 to 12 months of STN DBS. RESULTS: There was a 58% improvement from bilateral STN DBS in the UPDRS III (40 ± 16 preoperatively off, 17 ± 11 off/ON) 9.6 ± 1.9 months after surgery (P &lt; .001). This compared favorably with the published outcomes using the frame-based technique. All motor subscores improved significantly (P &lt; .01). The mean reduction in medication was 50%. No intraoperative complications occurred, but one subject with hypertension died of a delayed hemorrhage postoperatively. Two subjects developed postoperative infections that required lead removal and antibiotics. CONCLUSIONS: Bilateral STN DBS for PD performed by an experienced team using a frameless approach results in outcomes comparable to those reported with the use of the frame-based technique.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Yi Xie ◽  
Xiangyu Meng ◽  
Jinsong Xiao ◽  
Jie Zhang ◽  
Junjian Zhang

Background. Nowadays, it has been largely acknowledged that deep brain stimulation of subthalamic nucleus (STN DBS) can alleviate motor symptoms of Parkinson’s disease, but its effects on cognitive function remain unclear, which are not given enough attention by many clinical doctors and researchers. To date, 3 existing meta-analyses focusing on this issue included self-control studies and have not drawn consistent conclusions. The present study is the first to compare effect sizes of primary studies that include control groups, hoping to reveal the net cognitive outcomes after STN DBS and the clinical significance. Methods. A structured literature search was conducted using strict criteria. Only studies with control group could be included. Data on age, duration of disease, levodopa equivalent dosage (LED), and multiple cognitive scales were collected and pooled. Results. Of 172 articles identified, 10 studies (including 3 randomized controlled trials and 7 nonrandomized controlled studies) were eligible for inclusion. The results suggest that STN DBS results in decreased global cognition, memory, verbal fluency, and executive function compared with control group. No significant difference is found in other cognitive domains. Conclusions. STN DBS seems relatively safe with respect to cognitive function, and further studies should focus on the exact mechanisms of possible verbal deterioration after surgery in the future.


Sign in / Sign up

Export Citation Format

Share Document