On a stochastic representation theorem for Meyer-measurable processes

Author(s):  
Peter Bank ◽  
David Besslich
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lukas Vlcek ◽  
Shize Yang ◽  
Yongji Gong ◽  
Pulickel Ajayan ◽  
Wu Zhou ◽  
...  

AbstractExploration of structure-property relationships as a function of dopant concentration is commonly based on mean field theories for solid solutions. However, such theories that work well for semiconductors tend to fail in materials with strong correlations, either in electronic behavior or chemical segregation. In these cases, the details of atomic arrangements are generally not explored and analyzed. The knowledge of the generative physics and chemistry of the material can obviate this problem, since defect configuration libraries as stochastic representation of atomic level structures can be generated, or parameters of mesoscopic thermodynamic models can be derived. To obtain such information for improved predictions, we use data from atomically resolved microscopic images that visualize complex structural correlations within the system and translate them into statistical mechanical models of structure formation. Given the significant uncertainties about the microscopic aspects of the material’s processing history along with the limited number of available images, we combine model optimization techniques with the principles of statistical hypothesis testing. We demonstrate the approach on data from a series of atomically-resolved scanning transmission electron microscopy images of MoxRe1-xS2 at varying ratios of Mo/Re stoichiometries, for which we propose an effective interaction model that is then used to generate atomic configurations and make testable predictions at a range of concentrations and formation temperatures.


Author(s):  
Giacomo Ascione ◽  
Nikolai Leonenko ◽  
Enrica Pirozzi

AbstractIn this paper, we study strong solutions of some non-local difference–differential equations linked to a class of birth–death processes arising as discrete approximations of Pearson diffusions by means of a spectral decomposition in terms of orthogonal polynomials and eigenfunctions of some non-local derivatives. Moreover, we give a stochastic representation of such solutions in terms of time-changed birth–death processes and study their invariant and their limit distribution. Finally, we describe the correlation structure of the aforementioned time-changed birth–death processes.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1490
Author(s):  
Raquel Fernandez-Peralta ◽  
Sebastia Massanet ◽  
Arnau Mir

In this study, we analyze the family of generalized (h,e)-implications. We determine when this family fulfills some of the main additional properties of fuzzy implication functions and we obtain a representation theorem that describes the structure of a generalized (h,e)-implication in terms of two families of fuzzy implication functions. These two families can be interpreted as particular cases of the (f,g) and (g,f)-implications, which are two families of fuzzy implication functions that generalize the well-known f and g-generated implications proposed by Yager through a generalization of the internal factors x and 1x, respectively. The behavior and additional properties of these two families are also studied in detail.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1226
Author(s):  
Inmaculada Barranco-Chamorro ◽  
Yuri A. Iriarte ◽  
Yolanda M. Gómez ◽  
Juan M. Astorga ◽  
Héctor W. Gómez

Specifying a proper statistical model to represent asymmetric lifetime data with high kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic representation, probability density function, hazard rate function, moments and estimation of parameters via maximum likelihood methods. As merits of our proposal, we highlight as particular cases a plethora of lifetime models, such as Rayleigh, Maxwell, half-normal and chi-square, among others, which are able to accommodate heavy tails. A simulation study and applications to real data sets are included to illustrate the use of our results.


Sign in / Sign up

Export Citation Format

Share Document