Repair of Isolated Axillary Nerve Lesions after Infraclavicular Brachial Plexus Injuries: Case Reports

Neurosurgery ◽  
1990 ◽  
Vol 27 (3) ◽  
pp. 403-407 ◽  
Author(s):  
Allan H. Friedman ◽  
James A. Nunley ◽  
James R. Urbaniak ◽  
Richard D. Goldner

Abstract Stretch injuries of the infraclavicular brachial plexus have a much better prognosis for spontaneous recovery than do their supraclavicular counterparts. We present three patients with stretch injuries of the infraclavicular brachial plexus who had spontaneous restoration of function in all muscles except the deltoid. Decreased shoulder abduction was a serious handicap to these individuals. At surgical exploration, each patient had an isolated, complete axillary nerve disruption at the quadrilateral space. Deltoid muscle function was restored in all three patients by repair of the axillary nerve with sural nerve grafts across the quadrilateral space.

2014 ◽  
Vol 14 (5) ◽  
pp. 518-526 ◽  
Author(s):  
Scott L. Zuckerman ◽  
Ilyas M. Eli ◽  
Manish N. Shah ◽  
Nadine Bradley ◽  
Christopher M. Stutz ◽  
...  

Object Axillary nerve palsy, isolated or as part of a more complex brachial plexus injury, can have profound effects on upper-extremity function. Radial to axillary nerve neurotization is a useful technique for regaining shoulder abduction with little compromise of other neurological function. A combined experience of this procedure used in children is reviewed. Methods A retrospective review of the authors' experience across 3 tertiary care centers with brachial plexus and peripheral nerve injury in children (younger than 18 years) revealed 7 cases involving patients with axillary nerve injury as part of an overall brachial plexus injury with persistent shoulder abduction deficits. Two surgical approaches to the region were used. Results Four infants (ages 0.6, 0.8, 0.8, and 0.6 years) and 3 older children (ages 8, 15, and 17 years) underwent surgical intervention. No patient had significant shoulder abduction past 15° preoperatively. In 3 cases, additional neurotization was performed in conjunction with the procedure of interest. Two surgical approaches were used: posterior and transaxillary. All patients displayed improvement in shoulder abduction. All were able to activate their deltoid muscle to raise their arm against gravity and 4 of 7 were able to abduct against resistance. The median duration of follow-up was 15 months (range 8 months to 5.9 years). Conclusions Radial to axillary nerve neurotization improved shoulder abduction in this series of patients treated at 3 institutions. While rarely used in children, this neurotization procedure is an excellent option to restore deltoid function in children with brachial plexus injury due to birth or accidental trauma.


2004 ◽  
Vol 16 (5) ◽  
pp. 1-13
Author(s):  
Martijn J. A. Malessy ◽  
Godard C. W. de Ruiter ◽  
Kees S. de Boer ◽  
Ralph T. W. M. Thomeer

Object The aim of this retrospective study was to evaluate the restoration of shoulder function by means of supra-scapular nerve neurotization in adult patients with proximal C-5 and C-6 lesions due to a severe brachial plexus traction injury (BPTI). The primary goal of brachial plexus reconstructive surgery was to restore the biceps muscle function and, secondarily, to reanimate shoulder function. Methods Suprascapular nerve neurotization was performed by grafting the C-5 nerve in 24 patients and by accessory or hypoglossal nerve transfer in 29 patients. Additional neurotization involving the axillary nerve could be performed in 18 patients. Postoperative needle electromyography studies of the supraspinatus, infraspinatus, and deltoid muscles showed signs of reinnervation in most patients; however, active glenohumeral shoulder function recovery was poor. In nine (17%) of 53 patients supraspinatus muscle strength was Medical Research Council (MRC) Grade 3 or 4 and in four (8%) infraspinatus muscle power was Grade 3 or 4. In 18 patients in whom deltoid muscle reinnervation was attempted, MRC Grade 3 or 4 function was demonstrated in two (11%). In the overall group, eight patients (15%) exhibited glenohumeral abduction with a mean of 44 ± 17° (standard deviation [SD]) (median 45°) and four patients (8%) exhibited glenohumeral exorotation with a mean of 48 ± 24° (SD) (median 53°). In only three patients (6%) were both functions regained. Conclusions The reanimation of shoulder function in patients with proximal C-5 and C-6 BPTIs following supra-scapular nerve neurotization is disappointingly low.


2013 ◽  
Vol 119 (3) ◽  
pp. 689-694 ◽  
Author(s):  
Pavel Haninec ◽  
Libor Mencl ◽  
Radek Kaiser

Object Although a number of theoretical and experimental studies dealing with end-to-side neurorrhaphy (ETSN) have been published to date, there is still a considerable lack of clinical trials investigating this technique. Here, the authors describe their experience with ETSN in axillary and musculocutaneous nerve reconstruction in patients with brachial plexus palsy. Methods From 1999 to 2007, out of 791 reconstructed nerves in 441 patients treated for brachial plexus injury, the authors performed 21 axillary and 2 musculocutaneous nerve sutures onto the median, ulnar, or radial nerves. This technique was only performed in patients whose donor nerves, such as the thoracodorsal and medial pectoral nerves, which the authors generally use for repair of axillary and musculocutaneous nerves, respectively, were not available. In all patients, a perineurial suture was carried out after the creation of a perineurial window. Results The overall success rate of the ETSN was 43.5%. Reinnervation of the deltoid muscle with axillary nerve suture was successful in 47.6% of the patients, but reinnervation of the biceps muscle was unsuccessful in the 2 patients undergoing musculocutaneous nerve repair. Conclusions The authors conclude that ETSN should be performed in axillary nerve reconstruction but only when commonly used donor nerves are not available.


2021 ◽  
Vol 8 ◽  
Author(s):  
Scott Ferris ◽  
Aaron Withers ◽  
Lipi Shukla

Upper brachial plexus injuries to the C5/6 roots or axillary nerve can result in severe deficits in upper limb function. Current techniques to reinnervate the deltoid muscle utilise the well-described transfer of radial nerve branches to triceps to the axillary nerve. However, in around 25% of patients, there is a failure of sufficient deltoid reinnervation. It is unclear in the literature if deltoid reanimation should be attempted with a nerve transfer from a weak but functioning triceps nerve. The authors present the largest series of triceps to axillary nerve transfers for deltoid reanimation in order to answer this clinical question. Seventy-seven consecutive patients of a single surgeon were stratified and analysed in four groups: (1) normal triceps at presentation, (2) abnormal triceps at presentation recovering to clinically normal function preoperatively, (3) abnormal triceps at presentation remaining abnormal preoperatively, and lastly (4) where pre-operative triceps function was deemed insufficient for use, requiring alternative reconstruction for deltoid reanimation. The authors considered deltoid re-animation of ≥ M4 as successful for the purpose of this study. Median Medical Research Council (MRC) values demonstrate group 1 achieves this successfully (M5), while median values for groups 2–4 result in M4 power (albeit with decreasing interquartile ranges). Median post-operative shoulder abduction active range of motion (AROM) values were represented by 170° (85–180) in group 1, 117.5° (97.5–140) in group 2, 90° (35–150) in group 3, and 60° (40–155) in group 4. For both post-operative assessments, subgroup analyses demonstrated statistically significant differences when comparing group 1 with groups 3 and 4 (p < 0.05), while all the other group to group pairwise comparisons did not reach significance. The authors postulated that triceps deficiency can act as a surrogate marker of a more extensive plexus injury and may predict poorer outcomes if the weakness persists representing the trending differences between groups 2 and 3. However, given no statistical differences were demonstrated between groups 3 and 4, the authors conclude that utilising an abnormal triceps nerve that demonstrates sufficient strength and redundancy intraoperatively is preferable to alternative transfers for deltoid reanimation. Lastly, in group 4 patients where triceps nerves are damaged and unusable for nerve transfer, alternative operations can also achieve sufficient outcomes and should be considered for restoration of shoulder abduction.


2012 ◽  
Vol 117 (3) ◽  
pp. 610-614 ◽  
Author(s):  
Pavel Haninec ◽  
Radek Kaiser

Object Nerve repair using motor fascicles of a different nerve was first described for the repair of elbow flexion (Oberlin technique). In this paper, the authors describe their experience with a similar method for axillary nerve reconstruction in cases of upper brachial plexus palsy. Methods Of 791 nerve reconstructions performed by the senior author (P.H.) between 1993 and 2011 in 441 patients with brachial plexus injury, 14 involved axillary nerve repair by fascicle transfer from the ulnar or median nerve. All 14 of these procedures were performed between 2007 and 2010. This technique was used only when there was a deficit of the thoracodorsal or long thoracic nerve, which are normally used as donors. Results Nine patients were followed up for 24 months or longer. Good recovery of deltoid muscle strength was seen in 7 (77.8%) of these 9 patients, and in 4 patients with less follow-up (14–23 months), for an overall success rate of 78.6%. The procedure was unsuccessful in 2 of the 9 patients with at least 24 months of follow-up. The first showed no signs of reinnervation of the axillary nerve by either clinical or electromyographic evaluation in 26 months of follow-up, and the second had Medical Research Council (MRC) Grade 2 strength in the deltoid muscle 36 months after the operation. The last of the group of 14 patients has had 12 months of follow-up and is showing progressive improvement of deltoid muscle function (MRC Grade 2). Conclusions The authors conclude that fascicle transfer from the ulnar or median nerve onto the axillary nerve is a safe and effective method for reconstruction of the axillary nerve in patients with upper brachial plexus injury.


Author(s):  
Venkata Koteswara Rao Rayidi ◽  
Srikanth R. ◽  
Jagadish Kiran C.V. Appaka

Abstract Introduction Brachial plexus injuries are severe life-altering injuries. The surgical method to restore shoulder abduction in adult upper brachial plexus injuries involves the usage of nerve grafts and nerve transfers targeting the suprascapular and/or the axillary nerve. When the primary nerve surgery has been unsuccessful or recovery has been incomplete or with a late presentation, muscle transfer procedures are needed to provide or improve shoulder abduction. Levator scapulae to supraspinatus is a transfer to improve shoulder abduction in posttraumatic brachial plexus injuries. Material and Methods The study included 13 patients with the age ranging from 17 to 47 years with a mean age of 30 years. All these patients had preop shoulder abduction of Medical Research Council (MRC) grade ≤3. All had a minimum of MRC grade 4 of active elbow flexion. Eleven patients had primary surgery. Only patients with a minimum of 1 year postoperative follow-up were included. All 13 patients underwent levator scapulae transfer only. Results All patients had a stable shoulder postoperatively. The average increase in active shoulder abduction was from 6.15°(median: 0°) preoperatively to 61.92°(median: 60°), with an average gain in shoulder abduction of 49.61°(median: 50°). Conclusions Transfer of levator scapulae tendon to the supraspinatus is an option to improve shoulder abduction in posttraumatic brachial plexus. In conditions where supraspinatus alone is not functioning, levator scapulae is the best available transfer, considering its strength and maintaining the form of the shoulder unlike trapezius transfer. In patients with previous surgery where supraspinatus has recovered partially but not functionally significant, this tendon transfer can be considered for the augmentation of the existing shoulder abduction.


2020 ◽  
Vol 27 (07) ◽  
pp. 1442-1447
Author(s):  
Husnain Khan ◽  
Muhammad Shafique ◽  
Zahid Iqbal Bhatti ◽  
Tehseen Ahmad Cheema

Adult brachial plexus injury is a now a common problem due to high incidence of motorbike accidents. Among all types, C 5 and C6 (upper brachial plexus injury) is the most common. If the patient present within 6 months then nerve transfer is the preferred treatment. However, there are different options for nerve transfer and different approaches for surgery. Objectives: The objective of the study was to share our experience of nerve transfer close to target muscles in upper brachial plexus injury. Study Design: Quaisi experimental study. Setting: National Orthopaedic Hospital, Bahawalpur. Period: January 2015 to June 2018. Material & Methods: Total 32 patients were operated with isolated C5 and C6 injury. In all patients four nerve transfers were done. For shoulder abduction posterior approach was used and accessory to suprascapular nerve and one of motor branch of radial to axillary nerve were transferred. Modified Oberlin transfer was done for elbow flexion. Both shoulder abduction and elbow flexion was graded according to medical research council grading system. Results: After one year follow up more than 75% of the patients showed good to normal shoulder abduction and 87.50% showed good to normal elbow flexion. Residual Median nerve damage was noted only in two patients (6.25%). Conclusion: If there is no evidence of recovery up to three months early nerve transfer should be considered, ideal time is 3-6 months. Nerve transfer close to target muscle yields superior results. The shoulder stabilizers and abductors should ideally be innervated by double nerve transfer through posterior approach. Similarly double fascicular transfer (modified Oberlin) should be done for elbow flexion.


Sign in / Sign up

Export Citation Format

Share Document