scholarly journals Defining the Reliability of Deltoid Reanimation by Nerve Transfer When Using Abnormal but Variably Recovered Triceps Donor Nerves

2021 ◽  
Vol 8 ◽  
Author(s):  
Scott Ferris ◽  
Aaron Withers ◽  
Lipi Shukla

Upper brachial plexus injuries to the C5/6 roots or axillary nerve can result in severe deficits in upper limb function. Current techniques to reinnervate the deltoid muscle utilise the well-described transfer of radial nerve branches to triceps to the axillary nerve. However, in around 25% of patients, there is a failure of sufficient deltoid reinnervation. It is unclear in the literature if deltoid reanimation should be attempted with a nerve transfer from a weak but functioning triceps nerve. The authors present the largest series of triceps to axillary nerve transfers for deltoid reanimation in order to answer this clinical question. Seventy-seven consecutive patients of a single surgeon were stratified and analysed in four groups: (1) normal triceps at presentation, (2) abnormal triceps at presentation recovering to clinically normal function preoperatively, (3) abnormal triceps at presentation remaining abnormal preoperatively, and lastly (4) where pre-operative triceps function was deemed insufficient for use, requiring alternative reconstruction for deltoid reanimation. The authors considered deltoid re-animation of ≥ M4 as successful for the purpose of this study. Median Medical Research Council (MRC) values demonstrate group 1 achieves this successfully (M5), while median values for groups 2–4 result in M4 power (albeit with decreasing interquartile ranges). Median post-operative shoulder abduction active range of motion (AROM) values were represented by 170° (85–180) in group 1, 117.5° (97.5–140) in group 2, 90° (35–150) in group 3, and 60° (40–155) in group 4. For both post-operative assessments, subgroup analyses demonstrated statistically significant differences when comparing group 1 with groups 3 and 4 (p < 0.05), while all the other group to group pairwise comparisons did not reach significance. The authors postulated that triceps deficiency can act as a surrogate marker of a more extensive plexus injury and may predict poorer outcomes if the weakness persists representing the trending differences between groups 2 and 3. However, given no statistical differences were demonstrated between groups 3 and 4, the authors conclude that utilising an abnormal triceps nerve that demonstrates sufficient strength and redundancy intraoperatively is preferable to alternative transfers for deltoid reanimation. Lastly, in group 4 patients where triceps nerves are damaged and unusable for nerve transfer, alternative operations can also achieve sufficient outcomes and should be considered for restoration of shoulder abduction.

2004 ◽  
Vol 16 (5) ◽  
pp. 1-13
Author(s):  
Martijn J. A. Malessy ◽  
Godard C. W. de Ruiter ◽  
Kees S. de Boer ◽  
Ralph T. W. M. Thomeer

Object The aim of this retrospective study was to evaluate the restoration of shoulder function by means of supra-scapular nerve neurotization in adult patients with proximal C-5 and C-6 lesions due to a severe brachial plexus traction injury (BPTI). The primary goal of brachial plexus reconstructive surgery was to restore the biceps muscle function and, secondarily, to reanimate shoulder function. Methods Suprascapular nerve neurotization was performed by grafting the C-5 nerve in 24 patients and by accessory or hypoglossal nerve transfer in 29 patients. Additional neurotization involving the axillary nerve could be performed in 18 patients. Postoperative needle electromyography studies of the supraspinatus, infraspinatus, and deltoid muscles showed signs of reinnervation in most patients; however, active glenohumeral shoulder function recovery was poor. In nine (17%) of 53 patients supraspinatus muscle strength was Medical Research Council (MRC) Grade 3 or 4 and in four (8%) infraspinatus muscle power was Grade 3 or 4. In 18 patients in whom deltoid muscle reinnervation was attempted, MRC Grade 3 or 4 function was demonstrated in two (11%). In the overall group, eight patients (15%) exhibited glenohumeral abduction with a mean of 44 ± 17° (standard deviation [SD]) (median 45°) and four patients (8%) exhibited glenohumeral exorotation with a mean of 48 ± 24° (SD) (median 53°). In only three patients (6%) were both functions regained. Conclusions The reanimation of shoulder function in patients with proximal C-5 and C-6 BPTIs following supra-scapular nerve neurotization is disappointingly low.


Neurosurgery ◽  
1990 ◽  
Vol 27 (3) ◽  
pp. 403-407 ◽  
Author(s):  
Allan H. Friedman ◽  
James A. Nunley ◽  
James R. Urbaniak ◽  
Richard D. Goldner

Abstract Stretch injuries of the infraclavicular brachial plexus have a much better prognosis for spontaneous recovery than do their supraclavicular counterparts. We present three patients with stretch injuries of the infraclavicular brachial plexus who had spontaneous restoration of function in all muscles except the deltoid. Decreased shoulder abduction was a serious handicap to these individuals. At surgical exploration, each patient had an isolated, complete axillary nerve disruption at the quadrilateral space. Deltoid muscle function was restored in all three patients by repair of the axillary nerve with sural nerve grafts across the quadrilateral space.


2014 ◽  
Vol 14 (5) ◽  
pp. 518-526 ◽  
Author(s):  
Scott L. Zuckerman ◽  
Ilyas M. Eli ◽  
Manish N. Shah ◽  
Nadine Bradley ◽  
Christopher M. Stutz ◽  
...  

Object Axillary nerve palsy, isolated or as part of a more complex brachial plexus injury, can have profound effects on upper-extremity function. Radial to axillary nerve neurotization is a useful technique for regaining shoulder abduction with little compromise of other neurological function. A combined experience of this procedure used in children is reviewed. Methods A retrospective review of the authors' experience across 3 tertiary care centers with brachial plexus and peripheral nerve injury in children (younger than 18 years) revealed 7 cases involving patients with axillary nerve injury as part of an overall brachial plexus injury with persistent shoulder abduction deficits. Two surgical approaches to the region were used. Results Four infants (ages 0.6, 0.8, 0.8, and 0.6 years) and 3 older children (ages 8, 15, and 17 years) underwent surgical intervention. No patient had significant shoulder abduction past 15° preoperatively. In 3 cases, additional neurotization was performed in conjunction with the procedure of interest. Two surgical approaches were used: posterior and transaxillary. All patients displayed improvement in shoulder abduction. All were able to activate their deltoid muscle to raise their arm against gravity and 4 of 7 were able to abduct against resistance. The median duration of follow-up was 15 months (range 8 months to 5.9 years). Conclusions Radial to axillary nerve neurotization improved shoulder abduction in this series of patients treated at 3 institutions. While rarely used in children, this neurotization procedure is an excellent option to restore deltoid function in children with brachial plexus injury due to birth or accidental trauma.


2020 ◽  
Vol 27 (07) ◽  
pp. 1442-1447
Author(s):  
Husnain Khan ◽  
Muhammad Shafique ◽  
Zahid Iqbal Bhatti ◽  
Tehseen Ahmad Cheema

Adult brachial plexus injury is a now a common problem due to high incidence of motorbike accidents. Among all types, C 5 and C6 (upper brachial plexus injury) is the most common. If the patient present within 6 months then nerve transfer is the preferred treatment. However, there are different options for nerve transfer and different approaches for surgery. Objectives: The objective of the study was to share our experience of nerve transfer close to target muscles in upper brachial plexus injury. Study Design: Quaisi experimental study. Setting: National Orthopaedic Hospital, Bahawalpur. Period: January 2015 to June 2018. Material & Methods: Total 32 patients were operated with isolated C5 and C6 injury. In all patients four nerve transfers were done. For shoulder abduction posterior approach was used and accessory to suprascapular nerve and one of motor branch of radial to axillary nerve were transferred. Modified Oberlin transfer was done for elbow flexion. Both shoulder abduction and elbow flexion was graded according to medical research council grading system. Results: After one year follow up more than 75% of the patients showed good to normal shoulder abduction and 87.50% showed good to normal elbow flexion. Residual Median nerve damage was noted only in two patients (6.25%). Conclusion: If there is no evidence of recovery up to three months early nerve transfer should be considered, ideal time is 3-6 months. Nerve transfer close to target muscle yields superior results. The shoulder stabilizers and abductors should ideally be innervated by double nerve transfer through posterior approach. Similarly double fascicular transfer (modified Oberlin) should be done for elbow flexion.


2013 ◽  
Vol 3 (1) ◽  
pp. 99-103
Author(s):  
James A Nunley ◽  
Fraser J Leversedge ◽  
Walter H Wray ◽  
J Mack Aldridge

ABSTRACT Purpose A loss of active shoulder abduction due to axillary nerve dysfunction may be caused by brachial plexus or isolated axillary nerve injury and is often associated with a severe functional deficit. The purpose of this study was to evaluate retrospectively the restoration of deltoid strength and shoulder abduction after transfer of a branch of the radial nerve to the axillary nerve for patients who had sustained an axillary nerve injury. Materials and methods We retrospectively reviewed all patients who underwent transfer of a branch of the radial nerve to the anterior branch of the axillary nerve at our institution, either alone or in combination with other nerve transfers, between 2004 and 2011. We identified, by chart review, 12 patients with an average follow-up of 16.7 months (6-36 months) who met inclusion criteria. Results Active shoulder abduction significantly improved from an average of 9.6° (0-60°) to 84.5° (0-160°) (p < 0.005). Average initial deltoid strength significantly improved from 0.3 (0-2) on the M scale to an average postoperative deltoid strength of 2.8 (0-5) (p < 0.005). Five of 12 (41.7%) achieved at least M4 strength and eight of 12 (66.7%) achieved at least M3 strength. No statistically significant difference was seen when subgroup analysis was performed for isolated nerve transfer vs multiple nerve transfer, mechanism of injury with MVC vs shoulder arthroplasty, age, branch of radial nerve transferred, or time from injury to surgery. No significant change in triceps strength was observed with an average of 4.9 (4-5) strength preoperatively and 4.8 (4-5) postoperatively (p = 0.34). There were three patients who achieved no significant gain in shoulder abduction or deltoid strength for unknown reasons. Conclusion Transfer of a branch of the radial nerve to the anterior branch of the axillary nerve is successful in improving deltoid strength and shoulder abduction in most patients. Our series, the largest North American series to our knowledge, has not shown outcomes as favorable as other series. Larger multicenter trials are needed. Type of study/Level of evidence This is a retrospective case series representing a level IV study. Funding No outside funding was received and the authors have no conflicts of interest to disclose. Wray WH III, Aldridge JM III, Nunley JA II, Ruch DS, Leversedge FJ. Restoration of Shoulder Abduction after Radial to Axillary Nerve Transfer following Trauma or Shoulder Arthroplasty. The Duke Orthop J 2013;3(1):99-103.


2020 ◽  
Vol 8 (9) ◽  
pp. e3096
Author(s):  
Matthew E. Wells ◽  
Gilberto A. Gonzalez ◽  
Benjamin R. Childs ◽  
Matthew R. Williams ◽  
Leon J. Nesti ◽  
...  

2004 ◽  
Vol 101 (3) ◽  
pp. 377-389 ◽  
Author(s):  
Martijn J. A. Malessy ◽  
Godard C. W. de Ruiter ◽  
Kees S. de Boer ◽  
Ralph T. W. M. Thomeer

Object. The aim of this retrospective study was to evaluate the restoration of shoulder function by means of suprascapular nerve neurotization in adult patients with proximal C-5 and C-6 lesions due to a severe brachial plexus traction injury. The primary goal of brachial plexus reconstructive surgery was to restore biceps muscle function and, secondarily, to reanimate shoulder function. Methods. Suprascapular nerve neurotization was performed by grafting the C-5 nerve in 24 patients and by accessory or hypoglossal nerve transfer in 29 patients. Additional neurotization involving the axillary nerve was performed in 18 patients. Postoperative needle electromyography studies of the supraspinatus, infraspinatus, and deltoid muscles showed signs of reinnervation in most patients; however, active glenohumeral shoulder function recovery was poor. In nine (17%) of 53 patients supraspinatus muscle strength was Medical Research Council (MRC) Grade 3 or 4 and in four patients (8%) infraspinatus muscle power was MRC Grade 3 or 4. In 18 patients in whom deltoid muscle reinnervation was attempted, MRC Grade 3 or 4 function was demonstrated in two (11%). In the overall group, eight patients (15%) exhibited glenohumeral abduction with a mean of 44 ± 17° (standard deviation [SD]; median 45°) and four patients (8%) exhibited glenohumeral exorotation with a mean of 48 ± 24° (SD; median 53°). In only three patients (6%) were both functions regained. Conclusions. The reanimation of shoulder function in patients with proximal C-5 and C-6 brachial plexus traction injuries following suprascapular nerve neurotization is disappointingly low.


VASA ◽  
2020 ◽  
Vol 49 (4) ◽  
pp. 281-284
Author(s):  
Atıf Yolgosteren ◽  
Gencehan Kumtepe ◽  
Melda Payaslioglu ◽  
Cuneyt Ozakin

Summary. Background: Prosthetic vascular graft infection (PVGI) is a complication with high mortality. Cyanoacrylate (CA) is an adhesive which has been used in a number of surgical procedures. In this in-vivo study, we aimed to evaluate the relationship between PVGI and CA. Materials and methods: Thirty-two rats were equally divided into four groups. Pouch was formed on back of rats until deep fascia. In group 1, vascular graft with polyethyleneterephthalate (PET) was placed into pouch. In group 2, MRSA strain with a density of 1 ml 0.5 MacFarland was injected into pouch. In group 3, 1 cm 2 vascular graft with PET piece was placed into pouch and MRSA strain with a density of 1 ml 0.5 MacFarland was injected. In group 4, 1 cm 2 vascular graft with PET piece impregnated with N-butyl cyanoacrylate-based adhesive was placed and MRSA strain with a density of 1 ml 0.5 MacFarland was injected. All rats were scarified in 96th hour, culture samples were taken where intervention was performed and were evaluated microbiologically. Bacteria reproducing in each group were numerically evaluated based on colony-forming unit (CFU/ml) and compared by taking their average. Results: MRSA reproduction of 0 CFU/ml in group 1, of 1410 CFU/ml in group 2, of 180 200 CFU/ml in group 3 and of 625 300 CFU/ml in group 4 was present. A statistically significant difference was present between group 1 and group 4 (p < 0.01), between group 2 and group 4 (p < 0.01), between group 3 and group 4 (p < 0.05). In terms of reproduction, no statistically significant difference was found in group 1, group 2, group 3 in themselves. Conclusions: We observed that the rate of infection increased in the cyanoacyrylate group where cyanoacrylate was used. We think that surgeon should be more careful in using CA in vascular surgery.


2019 ◽  
Vol 17 (4) ◽  
pp. 354-364
Author(s):  
Hassan Al-Thani ◽  
Moamena El-Matbouly ◽  
Maryam Al-Sulaiti ◽  
Noora Al-Thani ◽  
Mohammad Asim ◽  
...  

Background: We hypothesized that perioperative HbA1c influenced the pattern and outcomes of Lower Extremity Amputation (LEA). Methods: A retrospective analysis was conducted for all patients who underwent LEA between 2000 and 2013. Patients were categorized into 5 groups according to their perioperative HbA1c values [Group 1 (<6.5%), Group 2 (6.5-7.4%), Group 3 (7.5-8.4%), Group 4 (8.5-9.4%) and Group 5 (≥9.5%)]. We identified 848 patients with LEA; perioperative HbA1c levels were available in 547 cases (Group 1: 18.8%, Group 2: 17.7%, Group 3: 15.0%, Group 4: 13.5% and Group 5: 34.9%). Major amputation was performed in 35%, 32%, 22%, 10.8% and 13.6%, respectively. Results: The overall mortality was 36.5%; of that one quarter occurred during the index hospitalization. Mortality was higher in Group 1 (57.4%) compared with Groups 2-5 (46.9%, 38.3%, 36.1% and 31.2%, respectively, p=0.001). Cox regression analysis showed that poor glycemic control (Group 4 and 5) had lower risk of mortality post-LEA [hazard ratio 0.57 (95% CI 0.35-0.93) and hazard ratio 0.46 (95% CI 0.31-0.69)]; this mortality risk persisted even after adjustment for age and sex but was statistically insignificant. The rate of LEA was greater among poor glycemic control patients; however, the mortality was higher among patients with tight control. Conclusion: The effects of HbA1c on the immediate and long-term LEA outcomes and its therapeutic implications need further investigation.


Sign in / Sign up

Export Citation Format

Share Document