“Ex Vivo” Release of Eicosanoid from Human Brain Tissue: Its Relevance in the Development of Brain Edema

Neurosurgery ◽  
1991 ◽  
Vol 28 (6) ◽  
pp. 853-858 ◽  
Author(s):  
Paolo Gaetani ◽  
Riccardo Rodriguez y Baena ◽  
Fulvio Marzatico ◽  
Daniela Lombardi ◽  
Roberto Knerich ◽  
...  
Author(s):  
Alastair J Kirby ◽  
José P Lavrador ◽  
Istvan Bodi ◽  
Francesco Vergani ◽  
Ranjeev Bhangoo ◽  
...  

Abstract Background Lower-grade gliomas may be indolent for many years before developing malignant behaviour. The reasons mechanisms underlying malignant progression remain unclear. Methods We collected blocks of live human brain tissue donated by people undergoing glioma resection. The tissue blocks extended through the peritumoral cortex and into the glioma. The living human brain tissue was cut into ex vivo brain slices and bathed in 5-aminolevulinic acid (5-ALA). High-grade glioma cells avidly take up 5-aminolevulinic acid (5-ALA) and accumulate high levels of the fluorescent metabolite, Protoporphyrin IX (PpIX). We exploited the PpIX fluorescence emitted by higher-grade glioma cells to investigate the earliest stages of malignant progression in lower-grade gliomas. Results We found sparsely-distributed ‘hot-spots’ of PpIX-positive cells in living lower-grade glioma tissue. Glioma cells and endothelial cells formed part of the PpIX hotspots. Glioma cells in PpIX hotspots were IDH1 mutant and expressed nestin suggesting they had acquired stem-like properties. Spatial analysis with 5-ALA conjugated quantum dots indicated that these glioma cells replicated adjacent to blood vessels. PpIX hotspots formed in the absence of angiogenesis. Conclusion Our data show that PpIX hotspots represent microdomains of cells with high-grade potential within lower-grade gliomas and identify locations where malignant progression could start.


2005 ◽  
Vol 10 (1) ◽  
pp. 011006 ◽  
Author(s):  
Kostadinka Bizheva ◽  
Angelika Unterhuber ◽  
Boris Hermann ◽  
Boris Považay ◽  
Harald Sattmann ◽  
...  

2019 ◽  
Author(s):  
Jenny Wickham ◽  
Andrea Corna ◽  
Niklas Schwarz ◽  
Betül Uysal ◽  
Nikolas Layer ◽  
...  

AbstractHuman cerebrospinal fluid (hCSF) have proven advantageous over conventional medium when culturing both rodent and human brain tissue. Increased excitability and synchronicity, similar to the active state exclusively recorded in vivo, reported in rodent slice and cell-cultures with hCSF as recording medium, indicates properties of the hCSF not matched by the artificial cerebrospinal fluid (aCSF) commonly used for electrophysiological recording. To evaluate the possible importance of using hCSF as electrophysiological recording medium of human brain tissue, we compared the general excitability in ex vivo human brain tissue slice cultures during perfusion with hCSF and aCSF. For measuring the general activity from a majority of neurons within neocortical and hippocampal human ex vivo slices we used a microelectrode array (MEA) recording technique with 252 electrodes covering an area of 3.2 x 3.2 mm2 and a second CMOS-based MEA with 4225 electrodes on a 2 x 2 mm2 area for detailed mapping of action potential waveforms. We found that hCSF increase the number of active neurons and the firing rate of the neurons in the slices as well as increasing the numbers of bursts while leaving the duration of the bursts unchanged. Interestingly, not only an increase in the overall activity in the slices was observed, but a reconfiguration of the network functionality could be detected with specific activation and inactivation of subpopulations of neuronal ensembles. In conclusion, hCSF is an important component to consider for future human tissue studies, especially for experiments designed to mimic the in vivo situation.


Neurosurgery ◽  
1991 ◽  
pp. 853 ◽  
Author(s):  
P Gaetani ◽  
R Rodriguez y Baena ◽  
F Marzatico ◽  
D Lombardi ◽  
R Knerich ◽  
...  

Author(s):  
Paul Strenge ◽  
Birgit Lange ◽  
Christin Grill ◽  
Wolfgang Draxinger ◽  
Veit Danicke ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pravin Kumar ◽  
Marjolein Bulk ◽  
Andrew Webb ◽  
Louise van der Weerd ◽  
Tjerk H. Oosterkamp ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii193-ii193
Author(s):  
Lawrence Bronk ◽  
Sanjay Singh ◽  
Riya Thomas ◽  
Luke Parkitny ◽  
Mirjana Maletic-Savatic ◽  
...  

Abstract Treatment-related sequelae following cranial irradiation have life changing impacts for patients and their caregivers. Characterization of the basic response of human brain tissue to irradiation has been difficult due to a lack of preclinical models. The direct study of human brain tissue in vitro is becoming possible due to advances in stem cell biology, neuroscience, and tissue engineering with the development of organoids as novel model systems which enable experimentation with human tissue models. We sought to establish a cerebral organoid (CO) model to study the radioresponse of normal human brain tissue. COs were grown using human induced pluripotent stem cells and a modified Lancaster protocol. Compositional analysis during development of the COs showed expected populations of neurons and glia. We confirmed a population of microglia-like cells within the model positive for the makers Iba1 and CD68. After 2-months of maturation, COs were irradiated to 0, 10, and 20 Gy using a Shepard Mark-II Cs-137 irradiator and returned to culture. Subsets of COs were prepared for immunostaining at 30- and 70-days post-irradiation. To examine the effect of irradiation on the neural stem cell (NSC) population, sections were stained for SOX2 and Ki-67 expression denoting NSCs and proliferation respectively. Slides were imaged and scored using the CellProfiler software package. The percentage of proliferating NSCs 30-days post-irradiation was found to be significantly reduced for irradiated COs (5.7% (P=0.007) and 3.4% (P=0.001) for 10 and 20 Gy respectively) compared to control (12.7%). The reduction in the proliferating NSC population subsequently translated to a reduced population of NeuN-labeled mature neurons 70 days post-irradiation. The loss of proliferating NSCs and subsequent reduction in mature neurons demonstrates the long-term effects of radiation. Our initial results indicate COs will be a valuable model to study the effects of radiation therapy on normal and diseased human tissue.


1989 ◽  
Vol 169 (2-3) ◽  
pp. 325-328 ◽  
Author(s):  
Gerhard Gross ◽  
Gertraud Hanft ◽  
Hubertus M. Mehdorn

1980 ◽  
Vol 52 (2) ◽  
pp. 147-151 ◽  
Author(s):  
R. Schr�der ◽  
B. Reinartz

Sign in / Sign up

Export Citation Format

Share Document