Clinical Evaluation of Intraparenchymal Spiegelberg Pressure Sensor

Neurosurgery ◽  
2003 ◽  
Vol 52 (6) ◽  
pp. 1455-1459 ◽  
Author(s):  
Josef-Michael Lang ◽  
Jürgen Beck ◽  
Michael Zimmermann ◽  
Volker Seifert ◽  
Andreas Raabe

Abstract OBJECTIVE The Spiegelberg 3-PN intraparenchymal pressure sensor was clinically evaluated. DESCRIPTION OF INSTRUMENTATION The Spiegelberg intraparenchymal pressure sensor is a low-cost device that uniquely performs regular automatic zeroing in situ throughout the measurement period. OPERATIVE TECHNIQUE The Spiegelberg sensor was inserted in 87 patients who required intracranial pressure monitoring as part of their routine management. Complications were assessed by postoperative computed tomographic scanning and clinical investigation. The automated zeroing procedure was assessed after implantation of the sensor and during long-term measurement. In five patients, the “gold standard” of intraventricular pressure was measured simultaneously and compared with the intraparenchymal or subdural Spiegelberg 3-PN pressure. EXPERIENCE AND RESULTS No complications associated with the Spiegelberg sensor were observed. The duration of monitoring ranged from 3 to 28 days (mean, 10 d). In 3 patients, technical problems occurred, and in 84 patients, the pressure measurement was successful, including the automatic zeroing procedures performed by the monitor after insertion and hourly thereafter. The absolute difference between the Spiegelberg reading and the intraventricular pressure was less than ±3 mm Hg in 99.6% and less than ±2 mm Hg in 91.3% of readings. An Altman-Bland bias plot revealed good agreement between the two methods, with an average bias of 0.5 mm Hg, but revealed a significant trend toward 10% lower Spiegelberg readings with increasing intracranial pressure of >25 mm Hg. There was no difference between intraparenchymal and subdural locations. CONCLUSION The Spiegelberg 3-PN sensor was reliable and simple to use. It can be recommended for routine intraparenchymal and subdural pressure measurement at a considerably lower price compared with other tip transducers and has the unique advantage of automated zeroing in vivo.

2014 ◽  
Vol 12 (11) ◽  
pp. 111401-111404 ◽  
Author(s):  
Yuting Li Yuting Li ◽  
Wentao Zhang Wentao Zhang ◽  
Zhaogang Wang Zhaogang Wang ◽  
Hongbin Xu Hongbin Xu ◽  
Jing Han Jing Han ◽  
...  

1974 ◽  
Vol 21 (1) ◽  
pp. 702-706 ◽  
Author(s):  
Glenn A. Meyer ◽  
Warren C. Lyon ◽  
Thomas S. Bustard

Author(s):  
Ralf Bornefeld ◽  
Wolfgang Schreiber-Prillwitz ◽  
Olaf Stöver ◽  
Henry V. Allen ◽  
Michael L. Dunbar ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 064009 ◽  
Author(s):  
Xiong Liu ◽  
Yan Yao ◽  
Jiahao Ma ◽  
Yanhang Zhang ◽  
Qian Wang ◽  
...  

2014 ◽  
Vol 609-610 ◽  
pp. 993-996
Author(s):  
Qiang Shi ◽  
De Yong Chen ◽  
Jun Bo Wang ◽  
Kai Kai Bao ◽  
Li Juan Liu

A wireless and power-free pressure sensor system capable of real time in vivo gastrointestinal pressure monitoring has been developed. This system contains a sensor unit and a detection unit. Based on mutual inductance detection mechanism, the sensor is featured with simple device structure and therefore low cost. The packaged sensor unit was tested. Results obtained from experiment demonstrated that this sensor has a sensitivity of 0.2115 kHz / kPa within a pressure range-10~30 kPa. The in vivo testing result not only indicates a period of 2 contractions per minute peristalsis of rabbit stomach but also validates the feasibility of this real time wireless gastrointestinal pressure monitoring system.


Author(s):  
Preedipat Sattayasoonthorn ◽  
Jackrit Suthakorn ◽  
Sorayouth Chamnanvej ◽  
Jianmin Miao ◽  
A G P Kottapalli

Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


Sign in / Sign up

Export Citation Format

Share Document