IN VITRO STUDY OF BIOMECHANICAL BEHAVIOROF ANTERIORAND TRANSFORAMINAL LUMBARINTERBODY INSTRUMENTATION TECHNIQUES
Abstract OBJECTIVE To study the biomechanical behavior of lumbar interbody instrumentation techniques using titanium cages as either transforaminal lumbar interbody fusion (TLIF) or anterior lumbar interbody fusion (ALIF), with and without posterior pedicle fixation. METHODS Six fresh-frozen lumbar spines (L1–L5) were loaded with pure moments of ±7.5 Nm in unconstrained flexion-extension, lateral bending, and axial rotation. Specimen were tested intact, after implantation of an ALIF or TLIF cage “stand-alone” in L2–L3 or L3–L4, and after additional posterior pedicle screw fixation. RESULTS In all loading directions, the range of motion (ROM) of the segments instrumented with cage and pedicle screw fixation was below the ROM of the intact lumbar specimen for both instrumentation techniques. A significant difference was found between the TLIF cage and the ALIF cage with posterior pedicle screw fixation for the ROM in flexion-extension and axial rotation (P< 0.05). Without pedicle screw fixation, the TLIF cage showed a significantly increased ROM and neutral zone compared with an ALIF cage “stand-alone” in two of the three loading directions (P< 0.05). CONCLUSION With pedicle screw fixation, the ALIF cage provides a higher segmental stability than the TLIF cage in flexion-extension and axial rotation, but the absolute biomechanical differences are minor. The different cage design and approach show only minor differences of segmental stability when combined with posterior pedicle screw fixation.