SUSCEPTIBILITY-ENHANCED 3-TESLA T1-WEIGHTED SPOILED GRADIENT ECHO OF THE MIDBRAIN NUCLEI FOR GUIDANCE OF DEEP BRAIN STIMULATION IMPLANTATION

Neurosurgery ◽  
2009 ◽  
Vol 65 (4) ◽  
pp. 809-815 ◽  
Author(s):  
Geoffrey S. Young ◽  
Feng Feng ◽  
Hao Shen ◽  
Nan-kuei Chen

Abstract SURGICAL PLANNING FOR deep brain stimulation implantation procedures requires T1-weighted imaging (T1WI) for stereotactic navigation. Because the subthalamic nucleus, the main target for deep brain stimulation, and other midbrain nuclei cannot be visualized on the stereotactic guidance T1WI, additional T2-weighted imaging (T2WI) is generally obtained and registered to the T1WI for surgical targeting. Surgical planning based on the registration of the 2 data sets is subject to error resulting from inconsistent geometric distortions and any subject movement between the 2 scans. In this article, we propose a new method to produce susceptibility-enhanced, contrast-optimized T1-weighted 3-dimensional spoiled gradient recalled acquisition in steady state images with enhanced contrast for midbrain nuclei within the volumetric T1WI data set itself, eliminating the need for additional T2WI. The scan parameters of 3-dimensional spoiled gradient recalled acquisition in steady state are chosen in a way that T1WI can be obtained from conventional magnitude reconstruction and images with improved contrast between midbrain nuclei and surrounding tissues can be produced from the same data by performing susceptibility-weighted imaging reconstruction on a chosen region of interest. In addition, our preliminary experience suggests that the resulting contrast between the midbrain nuclei is superior to the current state-of-the-art fast spin echo T2WI in depicting the subthalamic nucleus as distinct from the substantia nigra pars reticulata and clear depiction of the nucleus ventrointermedius externus of thalamus.

2011 ◽  
Vol 115 (4) ◽  
pp. 852-857 ◽  
Author(s):  
Olivia O. Huston ◽  
Robert E. Watson ◽  
Matt A. Bernstein ◽  
Kiaran P. McGee ◽  
S. Matt Stead ◽  
...  

Object Deep brain stimulation (DBS) is an established neurosurgical technique used to treat a variety of neurological disorders, including Parkinson disease, essential tremor, dystonia, epilepsy, depression, and obsessive-compulsive disorder. This study reports on the use of intraoperative MR imaging during DBS surgery to evaluate acute hemorrhage, intracranial air, brain shift, and accuracy of lead placement. Methods During a 46-month period, 143 patients underwent 152 DBS surgeries including 289 lead placements utilizing intraoperative 1.5-T MR imaging. Imaging was supervised by an MR imaging physicist to maintain the specific absorption rate below the required level of 0.1 W/kg and always included T1 magnetization-prepared rapid gradient echo and T2* gradient echo sequences with selected use of T2 fluid attenuated inversion recovery (FLAIR) and T2 fast spin echo (FSE). Retrospective review of the intraoperative MR imaging examinations was performed to quantify the amount of hemorrhage and the amount of air introduced during the DBS surgery. Results Intraoperative MR imaging revealed 5 subdural hematomas, 3 subarachnoid hemorrhages, and 1 intraparenchymal hemorrhage in 9 of the 143 patients. Only 1 patient experiencing a subarachnoid hemorrhage developed clinically apparent symptoms, which included transient severe headache and mild confusion. Brain shift due to intracranial air was identified in 144 separate instances. Conclusions Intraoperative MR imaging can be safely performed and may assist in demonstrating acute changes involving intracranial hemorrhage and air during DBS surgery. These findings are rarely clinically significant and typically resolve prior to follow-up imaging. Selective use of T2 FLAIR and T2 FSE imaging can confirm the presence of hemorrhage or air and preclude the need for CT examinations.


2014 ◽  
Vol 57 (4) ◽  
pp. 1178-1190 ◽  
Author(s):  
Fredrik Karlsson ◽  
Katarina Olofsson ◽  
Patric Blomstedt ◽  
Jan Linder ◽  
Erik Nordh ◽  
...  

PurposeThe present study aimed at comparing the effects of deep brain stimulation (DBS) treatment of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) on the proficiency in achieving oral closure and release during plosive production of people with Parkinson's disease.MethodNineteen patients participated preoperatively and 12 months after DBS surgery. Nine patients had implantations in the STN, 7 bilaterally and 2 unilaterally (left). Ten had bilateral implantations in the cZi. Postoperative examinations were made off and on stimulation. All patients received simultaneous L-dopa treatment in all conditions. For a series of plosives extracted from a reading passage, absolute and relative measures of duration of frication and amplitude of plosive release were compared between conditions within each treatment group.ResultsRelative duration of frication increased in voiceless plosives in the on-stimulation condition in cZi patients. Similar trends were observed across the data set. Duration of prerelease frication and the release peak prominence increased in voiceless plosives on stimulation for both groups.ConclusionThe increased release prominence suggests that patients achieved a stronger closure gesture because of DBS but that the increased energy available resulted in increased frication.


2018 ◽  
Vol 16 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Stefan Hunsche ◽  
Clemens Neudorfer ◽  
Faycal El Majdoub ◽  
Mohammad Maarouf ◽  
Dieter Sauner

Abstract BACKGROUND Directional deep brain stimulation (DBS) constitutes an emerging technology that allows selective stimulation of target structures via partitioned electrode contacts. In order to effectively perform target-tailored stimulation, knowledge of the rotational orientation of the segmented leads is imperative. OBJECTIVE To develop a universally applicable and reliable method for determination of lead orientation angles in DBS using flat-panel computed tomography (fpCT). METHODS A binary template of directional leads DB-2202-30 (Boston Scientific, Natick, Massachusetts) and 6170 (Abbott, Plano, Texas) was imported into the 2-dimensional raw data set of a conventional fpCT scan. The template was aligned with and manually rotated around the predetermined lead trajectory. The overall orientation of the segmented lead can be deduced by transferring position and orientation of the lead orientation marker into the 3-dimensional volume. Accuracy of the method was investigated by two raters in a phantom study. RESULTS Accuracy were 5.4° ± 4.1° (range: 0.4°-11.9°) for rater 1 and 5.2° ± 3.0° (range: 0.3°-10.2°) for rater 2, when investigating DB-2202-30. For 6170 observed deviations were 2.5° ± 1.7° (range: 0.2°-5.2°) and 4.3° ± 3.6° (range: 0.2°-11.2°) for raters 1 and 2, respectively. CONCLUSION fpCT imaging constitutes a precise and accurate means to determine the rotational orientation of directional leads. The approach is universally transferable to different electrode designs as the template can easily be adjusted to the electrodes’ specific measures. The approach is independent from polar implantation angles owing to fpCT- and methodological features.


2016 ◽  
Vol 125 (2) ◽  
pp. 472-480 ◽  
Author(s):  
Suhan Senova ◽  
Koichi Hosomi ◽  
Jean-Marc Gurruchaga ◽  
Gaëtane Gouello ◽  
Naoufel Ouerchefani ◽  
...  

OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson's Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR–guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy delivered decreased by 36.3% with the 3D-SPACE-FLAIR sequence (p < 0.05). CONCLUSIONS 3D-SPACE-FLAIR sequences at 3 T improved STN lead placement under stereotactic conditions, improved the clinical outcome of patients with PD, and increased the benefit/risk ratio of STN-DBS surgery.


Sign in / Sign up

Export Citation Format

Share Document