Asymptotic tail behaviour of phase-type scale mixture distributions

2017 ◽  
Vol 12 (2) ◽  
pp. 412-432 ◽  
Author(s):  
Leonardo Rojas-Nandayapa ◽  
Wangyue Xie

AbstractWe consider phase-type scale mixture distributions which correspond to distributions of a product of two independent random variables: a phase-type random variable Y and a non-negative but otherwise arbitrary random variable S called the scaling random variable. We investigate conditions for such a class of distributions to be either light- or heavy-tailed, we explore subexponentiality and determine their maximum domains of attraction. Particular focus is given to phase-type scale mixture distributions where the scaling random variable S has discrete support – such a class of distributions has been recently used in risk applications to approximate heavy-tailed distributions. Our results are complemented with several examples.

2002 ◽  
Vol 32 (1) ◽  
pp. 43-55 ◽  
Author(s):  
K.W. Ng ◽  
Q.H. Tang ◽  
H. Yang

AbstractIn this paper, we investigate asymptotic properties of the tail probabilities of the maxima of partial sums of independent random variables. For some large classes of heavy-tailed distributions, we show that the tail probabilities of the maxima of the partial sums asymptotically equal to the sum of the tail probabilities of the individual random variables. Then we partially extend the result to the case of random sums. Applications to some commonly used risk processes are proposed. All heavy-tailed distributions involved in this paper are supposed on the whole real line.


2016 ◽  
Vol 53 (3) ◽  
pp. 818-832
Author(s):  
Onno Boxma ◽  
Michel Mandjes ◽  
Josh Reed

AbstractIn this paper we study a reflected AR(1) process, i.e. a process (Zn)n obeying the recursion Zn+1= max{aZn+Xn,0}, with (Xn)n a sequence of independent and identically distributed (i.i.d.) random variables. We find explicit results for the distribution of Zn (in terms of transforms) in case Xn can be written as Yn−Bn, with (Bn)n being a sequence of independent random variables which are all Exp(λ) distributed, and (Yn)n i.i.d.; when |a|<1 we can also perform the corresponding stationary analysis. Extensions are possible to the case that (Bn)n are of phase-type. Under a heavy-traffic scaling, it is shown that the process converges to a reflected Ornstein–Uhlenbeck process; the corresponding steady-state distribution converges to the distribution of a normal random variable conditioned on being positive.


2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


2018 ◽  
Vol 6 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Femin Yalcin ◽  
Serkan Eryilmaz ◽  
Ali Riza Bozbulut

AbstractIn this paper, a generalized class of run shock models associated with a bivariate sequence {(Xi, Yi)}i≥1 of correlated random variables is defined and studied. For a system that is subject to shocks of random magnitudes X1, X2, ... over time, let the random variables Y1, Y2, ... denote times between arrivals of successive shocks. The lifetime of the system under this class is defined through a compound random variable T = ∑Nt=1 Yt , where N is a stopping time for the sequence {Xi}i≤1 and represents the number of shocks that causes failure of the system. Another random variable of interest is the maximum shock size up to N, i.e. M = max {Xi, 1≤i≤ N}. Distributions of T and M are investigated when N has a phase-type distribution.


1968 ◽  
Vol 64 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≥ 1} be a sequence of independent random variables and write Suppose that the random vairables Xn are uniformly bounded by a random variable X in the sense thatSet qn(x) = Pr(|Xn| > x) and q(x) = Pr(|Xn| > x). If qn ≤ q and E|X|r < ∞ with 0 < r < 2 then we have (see Loève(4), 242)where ak = 0, if 0 < r < 1, and = EXk if 1 ≤ r < 2 and ‘a.s.’ stands for almost sure convergence. the purpose of this paper is to study the rates of convergence ofto zero for arbitrary ε > 0. We shall extend to the present context, results of (3) where the case of identically distributed random variables was treated. The techniques used here are strongly related to those of (3).


Author(s):  
SOLESNE BOURGUIN ◽  
JEAN-CHRISTOPHE BRETON

We investigate generalizations of the Cramér theorem. This theorem asserts that a Gaussian random variable can be decomposed into the sum of independent random variables if and only if they are Gaussian. We prove asymptotic counterparts of such decomposition results for multiple Wiener integrals and prove that similar results are true for the (asymptotic) decomposition of the semicircular distribution into free multiple Wigner integrals.


1999 ◽  
Vol 36 (01) ◽  
pp. 194-210 ◽  
Author(s):  
Sungyeol Kang ◽  
Richard F. Serfozo

A basic issue in extreme value theory is the characterization of the asymptotic distribution of the maximum of a number of random variables as the number tends to infinity. We address this issue in several settings. For independent identically distributed random variables where the distribution is a mixture, we show that the convergence of their maxima is determined by one of the distributions in the mixture that has a dominant tail. We use this result to characterize the asymptotic distribution of maxima associated with mixtures of convolutions of Erlang distributions and of normal distributions. Normalizing constants and bounds on the rates of convergence are also established. The next result is that the distribution of the maxima of independent random variables with phase type distributions converges to the Gumbel extreme-value distribution. These results are applied to describe completion times for jobs consisting of the parallel-processing of tasks represented by Markovian PERT networks or task-graphs. In these contexts, which arise in manufacturing and computer systems, the job completion time is the maximum of the task times and the number of tasks is fairly large. We also consider maxima of dependent random variables for which distributions are selected by an ergodic random environment process that may depend on the variables. We show under certain conditions that their distributions may converge to one of the three classical extreme-value distributions. This applies to parallel-processing where the subtasks are selected by a Markov chain.


2009 ◽  
Vol 46 (3) ◽  
pp. 721-731 ◽  
Author(s):  
Shibin Zhang ◽  
Xinsheng Zhang

In this paper, a stochastic integral of Ornstein–Uhlenbeck type is represented to be the sum of two independent random variables: one has a tempered stable distribution and the other has a compound Poisson distribution. In distribution, the compound Poisson random variable is equal to the sum of a Poisson-distributed number of positive random variables, which are independent and identically distributed and have a common specified density function. Based on the representation of the stochastic integral, we prove that the transition distribution of the tempered stable Ornstein–Uhlenbeck process is self-decomposable and that the transition density is a C∞-function.


1970 ◽  
Vol 7 (01) ◽  
pp. 89-98
Author(s):  
John Lamperti

In the first part of this paper, we will consider a class of Markov chains on the non-negative integers which resemble the Galton-Watson branching process, but with one major difference. If there are k individuals in the nth “generation”, and are independent random variables representing their respective numbers of offspring, then the (n + 1)th generation will contain max individuals rather than as in the branching case. Equivalently, the transition matrices Pij of the chains we will study are to be of the form where F(.) is the probability distribution function of a non-negative, integervalued random variable. The right-hand side of (1) is thus the probability that the maximum of i independent random variables distributed by F has the value j. Such a chain will be called a “maximal branching process”.


Sign in / Sign up

Export Citation Format

Share Document