scholarly journals Percolation of Hard Disks

2014 ◽  
Vol 51 (1) ◽  
pp. 235-246 ◽  
Author(s):  
D. Aristoff

Random arrangements of points in the plane, interacting only through a simple hard-core exclusion, are considered. An intensity parameter controls the average density of arrangements, in analogy with the Poisson point process. It is proved that, at high intensity, an infinite connected cluster of excluded volume appears almost surely.

2014 ◽  
Vol 51 (01) ◽  
pp. 235-246 ◽  
Author(s):  
D. Aristoff

Random arrangements of points in the plane, interacting only through a simple hard-core exclusion, are considered. An intensity parameter controls the average density of arrangements, in analogy with the Poisson point process. It is proved that, at high intensity, an infinite connected cluster of excluded volume appears almost surely.


2009 ◽  
Vol 41 (4) ◽  
pp. 958-977 ◽  
Author(s):  
Mark L. Huber ◽  
Robert L. Wolpert

In a repulsive point process, points act as if they are repelling one another, leading to underdispersed configurations when compared to a standard Poisson point process. Such models are useful when competition for resources exists, as in the locations of towns and trees. Bertil Matérn introduced three models for repulsive point processes, referred to as types I, II, and III. Matérn used types I and II, and regarded type III as intractable. In this paper an algorithm is developed that allows for arbitrarily accurate approximation of the likelihood for data modeled by the Matérn type-III process. This method relies on a perfect simulation method that is shown to be fast in practice, generating samples in time that grows nearly linearly in the intensity parameter of the model, while the running times for more naive methods grow exponentially.


2009 ◽  
Vol 41 (04) ◽  
pp. 958-977 ◽  
Author(s):  
Mark L. Huber ◽  
Robert L. Wolpert

In a repulsive point process, points act as if they are repelling one another, leading to underdispersed configurations when compared to a standard Poisson point process. Such models are useful when competition for resources exists, as in the locations of towns and trees. Bertil Matérn introduced three models for repulsive point processes, referred to as types I, II, and III. Matérn used types I and II, and regarded type III as intractable. In this paper an algorithm is developed that allows for arbitrarily accurate approximation of the likelihood for data modeled by the Matérn type-III process. This method relies on a perfect simulation method that is shown to be fast in practice, generating samples in time that grows nearly linearly in the intensity parameter of the model, while the running times for more naive methods grow exponentially.


2020 ◽  
Vol 57 (4) ◽  
pp. 1298-1312
Author(s):  
Martin Dirrler ◽  
Christopher Dörr ◽  
Martin Schlather

AbstractMatérn hard-core processes are classical examples for point processes obtained by dependent thinning of (marked) Poisson point processes. We present a generalization of the Matérn models which encompasses recent extensions of the original Matérn hard-core processes. It generalizes the underlying point process, the thinning rule, and the marks attached to the original process. Based on our model, we introduce processes with a clear interpretation in the context of max-stable processes. In particular, we prove that one of these processes lies in the max-domain of attraction of a mixed moving maxima process.


Sign in / Sign up

Export Citation Format

Share Document