scholarly journals Likelihood-based inference for Matérn type-III repulsive point processes

2009 ◽  
Vol 41 (04) ◽  
pp. 958-977 ◽  
Author(s):  
Mark L. Huber ◽  
Robert L. Wolpert

In a repulsive point process, points act as if they are repelling one another, leading to underdispersed configurations when compared to a standard Poisson point process. Such models are useful when competition for resources exists, as in the locations of towns and trees. Bertil Matérn introduced three models for repulsive point processes, referred to as types I, II, and III. Matérn used types I and II, and regarded type III as intractable. In this paper an algorithm is developed that allows for arbitrarily accurate approximation of the likelihood for data modeled by the Matérn type-III process. This method relies on a perfect simulation method that is shown to be fast in practice, generating samples in time that grows nearly linearly in the intensity parameter of the model, while the running times for more naive methods grow exponentially.

2009 ◽  
Vol 41 (4) ◽  
pp. 958-977 ◽  
Author(s):  
Mark L. Huber ◽  
Robert L. Wolpert

In a repulsive point process, points act as if they are repelling one another, leading to underdispersed configurations when compared to a standard Poisson point process. Such models are useful when competition for resources exists, as in the locations of towns and trees. Bertil Matérn introduced three models for repulsive point processes, referred to as types I, II, and III. Matérn used types I and II, and regarded type III as intractable. In this paper an algorithm is developed that allows for arbitrarily accurate approximation of the likelihood for data modeled by the Matérn type-III process. This method relies on a perfect simulation method that is shown to be fast in practice, generating samples in time that grows nearly linearly in the intensity parameter of the model, while the running times for more naive methods grow exponentially.


1986 ◽  
Vol 18 (03) ◽  
pp. 646-659 ◽  
Author(s):  
Steven P. Ellis

Spatial point processes are considered whose points are subjected to certain classes of affine transformations indexed by some variable, T. Under some hypotheses, for large T integrals with respect to such a point process behave approximately as if the process were Poisson. Under stronger hypotheses, the transformed process converges as a process to a Poisson process. The result gives the asymptotic distribution of certain density estimates.


1997 ◽  
Vol 34 (03) ◽  
pp. 643-656 ◽  
Author(s):  
William P. McCormick

Extreme value results for a class of shot noise processes with heavy tailed amplitudes are considered. For a process of the form, , where {τ k } are the points of a renewal process and {Ak } are i.i.d. with d.f. having a regularly varying tail, the limiting behavior of the maximum is determined. The extremal index is computed and any value in (0, 1) is possible. Two-dimensional point processes of the form are shown to converge to a compound Poisson point process limit. As a corollary to this result, the joint limiting distribution of high local maxima is obtained.


1997 ◽  
Vol 34 (3) ◽  
pp. 643-656 ◽  
Author(s):  
William P. McCormick

Extreme value results for a class of shot noise processes with heavy tailed amplitudes are considered. For a process of the form, , where {τ k} are the points of a renewal process and {Ak} are i.i.d. with d.f. having a regularly varying tail, the limiting behavior of the maximum is determined. The extremal index is computed and any value in (0, 1) is possible. Two-dimensional point processes of the form are shown to converge to a compound Poisson point process limit. As a corollary to this result, the joint limiting distribution of high local maxima is obtained.


2010 ◽  
Vol 42 (3) ◽  
pp. 620-630
Author(s):  
Y. Davydov ◽  
A. Nagaev ◽  
A. Philippe

In this paper we focus on the asymptotic properties of the sequence of convex hulls which arise as a result of a peeling procedure applied to the convex hull generated by a Poisson point process. Processes of the considered type are tightly connected with empirical point processes and stable random vectors. Results are given about the limit shape of the convex hulls in the case of a discrete spectral measure. We give some numerical experiments to illustrate the peeling procedure for a larger class of Poisson point processes.


1977 ◽  
Vol 14 (4) ◽  
pp. 732-739 ◽  
Author(s):  
Bruce M. Brown ◽  
Sidney I. Resnick

The maxima of independent Weiner processes spatially normalized with time scales compressed is considered and it is shown that a weak limit process exists. This limit process is stationary, and its one-dimensional distributions are of standard extreme-value type. The method of proof involves showing convergence of related point processes to a limit Poisson point process. The method is extended to handle the maxima of independent Ornstein–Uhlenbeck processes.


2012 ◽  
Vol 49 (1) ◽  
pp. 226-244
Author(s):  
Zakhar Kabluchko

We consider a system of independent branching random walks on R which start from a Poisson point process with intensity of the form eλ(du) = e-λudu, where λ ∈ R is chosen in such a way that the overall intensity of particles is preserved. Denote by χ the cluster distribution, and let φ be the log-Laplace transform of the intensity of χ. If λφ'(λ) > 0, we show that the system is persistent, meaning that the point process formed by the particles in the nth generation converges as n → ∞ to a non-trivial point process Πeλχ with intensity eλ. If λφ'(λ) < 0 then the branching population suffers local extinction, meaning that the limiting point process is empty. We characterize point processes on R which are cluster invariant with respect to the cluster distribution χ as mixtures of the point processes Πceλχ over c > 0 and λ ∈ Kst, where Kst = {λ ∈ R: φ(λ) = 0, λφ'(λ) > 0}.


1986 ◽  
Vol 18 (3) ◽  
pp. 646-659 ◽  
Author(s):  
Steven P. Ellis

Spatial point processes are considered whose points are subjected to certain classes of affine transformations indexed by some variable, T. Under some hypotheses, for large T integrals with respect to such a point process behave approximately as if the process were Poisson. Under stronger hypotheses, the transformed process converges as a process to a Poisson process. The result gives the asymptotic distribution of certain density estimates.


2014 ◽  
Vol 51 (1) ◽  
pp. 235-246 ◽  
Author(s):  
D. Aristoff

Random arrangements of points in the plane, interacting only through a simple hard-core exclusion, are considered. An intensity parameter controls the average density of arrangements, in analogy with the Poisson point process. It is proved that, at high intensity, an infinite connected cluster of excluded volume appears almost surely.


Sign in / Sign up

Export Citation Format

Share Document