scholarly journals A human stem cell resource to decipher the biochemical and cellular basis of neurodevelopmental defects in Lowe Syndrome

Biology Open ◽  
2022 ◽  
Author(s):  
Bilal M. Akhtar ◽  
Priyanka Bhatia ◽  
Shubhra Acharya ◽  
Sanjeev Sharma ◽  
Yojet Sharma ◽  
...  

Human brain development is a complex process where multiple cellular and developmental events are co-ordinated to generate normal structure and function. Alteration in any of these events can impact brain development, manifesting clinically as neurodevelopmental disorders. Human genetic disorders of lipid metabolism often present with features of altered brain function. Lowe syndrome (LS), is a X-linked recessive disease with features of altered brain function. LS results from mutations in OCRL1 that encodes a phosphoinositide 5-phosphatase enzyme. However, the cellular mechanisms by which loss of OCRL1 leads to brain defects remain unknown. Human brain development involves several cellular and developmental features not conserved in other species and understanding such mechanisms remains a challenge. Rodent models of LS have been generated, but failed to recapitulate features of the human disease. Here we describe the generation of human stem cell lines from LS patients. Further, we present biochemical characterization of lipid metabolism in patient cell lines and demonstrate their use as a “disease-in-a-dish” model for understanding the mechanism by which loss of OCRL1 leads to altered cellular and physiological brain development.

2021 ◽  
Author(s):  
Bilal Akhtar ◽  
Priyanka Bhatia ◽  
Shubhra Acharya ◽  
Sanjeev Sharma ◽  
Yojet Sharma ◽  
...  

Human brain development is a complex process where multiple cellular and developmental events are co-ordinated to generate normal structure and function. Alteration in any of these events can impact brain development, manifesting clinically as neurodevelopmental disorders. Human genetic disorders of lipid metabolism often present with features of altered brain function. Lowe syndrome (LS), is a X-linked recessive disease with features of altered brain function. LS results from mutations in OCRL1 that encodes a phosphoinositide 5-phosphatase enzyme. However, the cellular mechanisms by which loss of OCRL1 leads to brain defects remain unknown. Human brain development involves several cellular and developmental features not conserved in other species and understanding such mechanisms remains a challenge. Rodent models of LS have been generated, but failed to recapitulate features of the human disease. Here we describe the generation of human stem cell lines from LS patients. Further, we present biochemical characterization of lipid metabolism in patient cell lines and demonstrate their use as a disease-in-a-dish model for understanding the mechanism by which loss of OCRL1 leads to altered cellular and physiological brain development.


Development ◽  
2018 ◽  
Vol 145 (20) ◽  
pp. dev170100 ◽  
Author(s):  
Amanda M. Coletti ◽  
Deepinder Singh ◽  
Saurabh Kumar ◽  
Tasnuva Nuhat Shafin ◽  
Patrick J. Briody ◽  
...  

2016 ◽  
Vol 18 (6) ◽  
pp. 736-748 ◽  
Author(s):  
Iva Kelava ◽  
Madeline A. Lancaster

Author(s):  
Wai‐Kit Chan ◽  
Rana Fetit ◽  
Rosie Griffiths ◽  
Helen Marshall ◽  
John O Mason ◽  
...  

Author(s):  
Ugomma C. Eze ◽  
Aparna Bhaduri ◽  
Maximilian Haeussler ◽  
Tomasz J. Nowakowski ◽  
Arnold R. Kriegstein

AbstractThe human cortex comprises diverse cell types that emerge from an initially uniform neuroepithelium that gives rise to radial glia, the neural stem cells of the cortex. To characterize the earliest stages of human brain development, we performed single-cell RNA-sequencing across regions of the developing human brain, including the telencephalon, diencephalon, midbrain, hindbrain and cerebellum. We identify nine progenitor populations physically proximal to the telencephalon, suggesting more heterogeneity than previously described, including a highly prevalent mesenchymal-like population that disappears once neurogenesis begins. Comparison of human and mouse progenitor populations at corresponding stages identifies two progenitor clusters that are enriched in the early stages of human cortical development. We also find that organoid systems display low fidelity to neuroepithelial and early radial glia cell types, but improve as neurogenesis progresses. Overall, we provide a comprehensive molecular and spatial atlas of early stages of human brain and cortical development.


Sign in / Sign up

Export Citation Format

Share Document