The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres

Development ◽  
1990 ◽  
Vol 109 (3) ◽  
pp. 625-634 ◽  
Author(s):  
O. Khaner ◽  
F. Wilt

The developmental potential of different blastomeres of the sea urchin embryo was re-examined. We have employed a new method to isolate substantial numbers of different kinds of blastomeres from 16-cell-stage embryos, and we have used newly available molecular markers to analyze possible vegetal differentiation. We have found that, while isolated mesomere pairs behave according to the classical expectations and develop into ectodermal vesicles, there is a clear effect of reaggregating two or more mesomere pairs. They survive better in long-term culture and, after prolonged periods, they display an astonishing ability to express vegetal differentiation. We also combined mesomeres with stained micromeres or macromeres from the vegetal hemisphere. Although induction of guts and spicules was observed, there was little if any effect of varying the ratio of different blastomeres on the kinds of differentiation obtained.

Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 769-786 ◽  
Author(s):  
S.D. Reynolds ◽  
L.M. Angerer ◽  
J. Palis ◽  
A. Nasir ◽  
R.C. Angerer

The cloning and characterization of cDNAs representing four genes or small gene families that are coordinately expressed in a spatially restricted pattern during the very early blastula (VEB) stage of sea urchin development are presented. The VEB genes encode multiple transcripts that are expressed transiently in embryos of Strongylocentrotus purpuratus between 16-cell stage and hatching, with peak abundance 12 to 15 hours post-fertilization (approximately 150–250 cells). The VEB transcripts share the same spatial pattern in the early blastula embryo: they are asymmetrically distributed along the animal-vegetal axis but their distribution around this axis is uniform. Thus, the VEB transcripts are the earliest messages to reveal asymmetry along the primary axis in the sea urchin embryo. The temporal and spatial patterns of VEB transcript accumulation are not consistent with involvement of these gene products in cell division or in tissue-specific functions. Furthermore, VEB messages cannot be detected in either ovary or adult tissues, suggesting that these genes function exclusively during embryogenesis. We suggest that the VEB genes function in constructing the early blastula. Two VEB genes encode metalloendoproteases: one (SpHE) is hatching enzyme and the other (SpAN) is similar to bone morphogenetic protein-1 (BMP-1; Wozney et al., Science 242: 1528–1534, 1988) and the Tolloid gene product (tld) (Shimell et al., Cell 67: 459–482, 1991). Several lines of evidence suggest that the VEB genes are regulated directly by factors or regulatory activities localized along the maternally specificed animal-vegetal axis.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S41-S41 ◽  
Author(s):  
David R. McClay

It has long been recognized that micromeres have special significance in early specification events in the sea urchin embryo. Micromeres have the ability to induce a secondary axis if transferred to the animal pole at the 16-cell stage of sea urchin embryos (Hörstadius, 1939). Without micromeres an isolated animal hemisphere develops into an ectodermal ball called a dauer blastula. Addition of micromeres to an animal half rescues a normal pluteus larva, including endoderm (Hörstadius, 1939). Despite these well-known experiments, however, neither the molecular basis of that induction nor the endogenous inductive role of micromeres in development was known. In recent experiments we learned that if one eliminates micromeres from the vegetal pole at the 16-cell stage the resulting embryo makes no secondary mesenchyme. Earlier it had been found that β-catenin is crucial for specification events that lead to mesoderm and endoderm (Wikra-manayake et al., 1998; Emily-Fenouil et al., 1998; Logan et al., 1999). We noticed that at the 16-cell stage β-catenin enters the nuclei of micromeres, then enters the nuclei of macromeres at the 32-cell stage (Logan et al., 1999). Since nuclear entry of β-catenin is known to be important for its signalling function in the Wnt pathway, we asked whether β-catenin functions in the micromere induction pathway.


Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 641-647 ◽  
Author(s):  
R.A. Cameron ◽  
S.E. Fraser ◽  
R.J. Britten ◽  
E.H. Davidson

Several lines of evidence suggest that the oral-aboral axis in Strongylocentrotus purpuratus embryos is specified at or before the 8-cell stage. Were the oral-aboral axis specified independently of the first cleavage plane, then a random association of this plane with the blastomeres of the four embryo quadrants in the oral-aboral plane (viz. oral, aboral, right and left) would be expected. Lineage tracer dye injection into one blastomere at the 2-cell stage and observation of the resultant labeling patterns demonstrates instead a strongly nonrandom association. In at least ninety percent of cases, the progeny of the aboral blastomeres are associated with those of the left lateral blastomeres and the progeny of the oral blastomeres with the right lateral ones, respectively. Thus, ninety percent of the time the oral pole of the future oral-aboral axis lies 45 degrees clockwise from the first cleavage plane as viewed from the animal pole. The nonrandom association of blastomeres after labeling of the 2-cell stage implies that there is a mechanistic relation between axis specification and the positioning of the first cleavage plane.


Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
C.A. Ettensohn ◽  
S.W. Ruffins

An interaction between the two principal populations of mesodermal cells in the sea urchin embryo, primary and secondary mesenchyme cells (PMCs and SMCs, respectively), regulates SMC fates and the process of skeletogenesis. In the undisturbed embryo, skeletal elements are produced exclusively by PMCs. Certain SMCs also have the ability to express a skeletogenic phenotype; however, signals transmitted by the PMCs direct these cells into alternative developmental pathways. In this study, a combination of fluorescent cell-labeling methods, embryo microsurgery and cell-specific molecular markers have been used to study the lineage, numbers, normal fate(s) and developmental potential of the skeletogenic SMCs. Previous fate-mapping studies have shown that SMCs are derived from the veg2 layer of blastomeres of the 64-cell-stage embryo and from the small micromeres. By specifically labeling the small micromeres with 5-bromodeoxyuridine, we demonstrate that descendants of these cells do not participate in skeletogenesis in PMC-depleted larvae, even though they are the closest lineal relatives of PMCs. Skeletogenic SMCs are therefore derived exclusively from the veg2 blastomeres. Because the SMCs are a heterogeneous population of cells, we have sought to gain information concerning the normal fate(s) of skeletogenic SMCs by determining whether specific cell types are reduced or absent in PMC(−) larvae. Of the four known SMC derivatives: pigment cells, blastocoelar (basal) cells, muscle cells and coelomic pouch cells, only pigment cells show a major reduction (> 50%) in number following SMC skeletogenesis. We therefore propose that the PMC-derived signal regulates a developmental switch, directing SMCs to adopt a pigment cell phenotype instead of a default (skeletogenic) fate. Ablation of SMCs at the late gastrula stage does not result in the recruitment of any additional skeletogenic cells, demonstrating that, by this stage, the number of SMCs with skeletogenic potential is restricted to 60–70 cells. Previous studies showed that during their switch to a skeletogenic fate, SMCs alter their migratory behavior and cell surface properties. In this study, we demonstrate that during conversion, SMCs become insensitive to the PMC-derived signal, while at the same time they acquire PMC-specific signaling properties.


1998 ◽  
Vol 95 (16) ◽  
pp. 9343-9348 ◽  
Author(s):  
Athula H. Wikramanayake ◽  
Ling Huang ◽  
William H. Klein

In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal–vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal–vegetal axis. Our results also reveal similarities between the sea urchin animal–vegetal axis and the vertebrate dorsal–ventral axis, suggesting that these axes share a common evolutionary origin.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2213-2223 ◽  
Author(s):  
C.Y. Logan ◽  
D.R. McClay

During sea urchin development, a tier-to-tier progression of cell signaling events is thought to segregate the early blastomeres to five different cell lineages by the 60-cell stage (E. H. Davidson, 1989, Development 105, 421–445). For example, the sixth equatorial cleavage produces two tiers of sister cells called ‘veg1′ and ‘veg2,’ which were projected by early studies to be allocated to the ectoderm and endoderm, respectively. Recent in vitro studies have proposed that the segregation of veg1 and veg2 cells to distinct fates involves signaling between the veg1 and veg2 tiers (O. Khaner and F. Wilt, 1991, Development 112, 881–890). However, fate-mapping studies on 60-cell stage embryos have not been performed with modern lineage tracers, and cell interactions between veg1 and veg2 cells have not been shown in vivo. Therefore, as an initial step towards examining how archenteron precursors are specified, a clonal analysis of veg1 and veg2 cells was performed using the lipophilic dye, DiI(C16), in the sea urchin species, Lytechinus variegatus. Both veg1 and veg2 descendants form archenteron tissues, revealing that the ectoderm and endoderm are not segregated at the sixth cleavage. Also, this division does not demarcate cell type boundaries within the endoderm, because both veg1 and veg2 descendants make an overlapping range of endodermal cell types. The allocation of veg1 cells to ectoderm and endoderm during cleavage is variable, as revealed by both the failure of veg1 descendants labeled at the eighth equatorial division to segregate predictably to either tissue and the large differences in the numbers of veg1 descendants that contribute to the ectoderm. Furthermore, DiI-labeled mesomeres of 32-cell stage embryos also contribute to the endoderm at a low frequency. These results show that the prospective archenteron is produced by a larger population of cleavage-stage blastomeres than believed previously. The segregation of veg1 cells to the ectoderm and endoderm occurs relatively late during development and is unpredictable, indicating that later cell position is more important than the early cleavage pattern in determining ectodermal and archenteron cell fates.


1993 ◽  
Vol 41 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Judith M. Venuti ◽  
Lin Gan ◽  
Mark T. Kozlowski ◽  
William H. Klein

FEBS Journal ◽  
2008 ◽  
Vol 275 (9) ◽  
pp. 1988-1998 ◽  
Author(s):  
Takashi Yamaguchi ◽  
Taeko Ichise ◽  
Osamu Iwata ◽  
Akiko Hori ◽  
Tomomi Adachi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document