vegetal cell
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

2009 ◽  
Vol 29 (13) ◽  
pp. 3791-3802 ◽  
Author(s):  
Yan Zhang ◽  
Kara D. Forinash ◽  
Jered McGivern ◽  
Brian Fritz ◽  
Karel Dorey ◽  
...  

ABSTRACT The xCR1 protein is a maternal determinant and cofactor for nodal signaling in vertebrate embryos. The xCR1 protein accumulates specifically in the animal cells of Xenopus embryos, but maternal xCR1 mRNA is distributed equally throughout all embryonic cells. Here, we show that vegetal cell-specific translational repression of xCR1 mRNA contributes to this spatially restricted accumulation of the xCR1 protein in Xenopus embryos. xCR1 mRNA was associated with polyribosomes in animal cells but not vegetal cells. A 351-nucleotide region of xCR1 mRNA's 3′ untranslated region was sufficient to confer a spatially restricted pattern of translation to a luciferase reporter mRNA by repressing translation in vegetal cells. Repression depended upon the mRNA's 5′ cap but not its 3′ poly(A) tail. Furthermore, the region of xCR1 mRNA sufficient to confer vegetal cell-specific repression contained both Pumilio binding elements (PBEs) and binding sites for the CUG-BP1 protein. The PBEs and the CUG-BP1 sites were necessary but not sufficient for translation repression. Our studies of xCR1 mRNA document the first example of spatially regulated translation in controlling the asymmetric distribution of a maternal determinant in vertebrates.


2007 ◽  
Vol 27 (4) ◽  
pp. 607-611 ◽  
Author(s):  
Hanh Nguyen-Ngoc ◽  
Canh Tran-Minh

2003 ◽  
Author(s):  
Matthieu J. Denoual ◽  
Aoki Koh ◽  
Agnes Mita-Tixier ◽  
Hiroyuki Fujita

2001 ◽  
Vol 204 (5) ◽  
pp. 823-834
Author(s):  
I. Yazaki

In sea urchin embryos, the first specification of cell fate occurs at the fourth cleavage, when small cells (the micromeres) are formed at the vegetal pole. The fate of other blastomeres is dependent on the receipt of cell signals originating from the micromeres. The micromeres are fated to become skeletogenic cells and show the ability to induce the endoderm (the archenteron) in the neighbouring cells during the 16- to 60-cell stage. Several molecules involved in signaling pathways, i.e. Notch for mesoderm specification, bone morphogenic protein (BMP) for ectoderm specification and beta-catenin for endoderm specification, are spatially and temporally expressed during development. In the micromeres, beta-catenin increases and subsequently localizes to the nuclei under the regulation of TCF, a nuclear binding partner of beta-catenin, until the 60-cell stage. However, the mechanisms activating these signaling substances are still unclear. In this article, I demonstrate some specific properties of the membrane and cytoplasm of micromeres including new findings on intracellular Ca(2+) concentration, and propose a mechanism by which the functional micromeres are autonoumously formed. The possible roles of these in the specification of vegetal cell fate in early development are discussed.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3703-3713 ◽  
Author(s):  
R. Winklbauer ◽  
M. Schurfeld

A main achievement of gastrulation is the movement of the endoderm and mesoderm from the surface of the embryo to the interior. Despite its fundamental importance, this internalization process is not well understood in amphibians. We show that in Xenopus, an active distortion of the vegetal cell mass, vegetal rotation, leads to a dramatic expansion of the blastocoel floor and a concomitant turning around of the marginal zone which constitutes the first and major step of mesoderm involution. This vigorous inward surging of the vegetal region into the blastocoel can be analyzed in explanted slices of the gastrula, and is apparently driven by cell rearrangement. Thus, the prospective endoderm, previously thought to be moved passively, provides the main driving force for the internalization of the mesendoderm during the first half of gastrulation. For further involution, and for normal positioning of the involuted mesoderm and its rapid advance toward the animal pole, fibronectin-independent interaction with the blastocoel roof is required.


Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 345-357 ◽  
Author(s):  
C.Y. Logan ◽  
J.R. Miller ◽  
M.J. Ferkowicz ◽  
D.R. McClay

Beta-catenin is thought to mediate cell fate specification events by localizing to the nucleus where it modulates gene expression. To ask whether beta-catenin is involved in cell fate specification during sea urchin embryogenesis, we analyzed the distribution of nuclear beta-catenin in both normal and experimentally manipulated embryos. In unperturbed embryos, beta-catenin accumulates in nuclei that include the precursors of the endoderm and mesoderm, suggesting that it plays a role in vegetal specification. Using pharmacological, embryological and molecular approaches, we determined the function of beta-catenin in vegetal development by examining the relationship between the pattern of nuclear beta-catenin and the formation of endodermal and mesodermal tissues. Treatment of embryos with LiCl, a known vegetalizing agent, caused both an enhancement in the levels of nuclear beta-catenin and an expansion in the pattern of nuclear beta-catenin that coincided with an increase in endoderm and mesoderm. Conversely, overexpression of a sea urchin cadherin blocked the accumulation of nuclear beta-catenin and consequently inhibited the formation of endodermal and mesodermal tissues including micromere-derived skeletogenic mesenchyme. In addition, nuclear beta-catenin-deficient micromeres failed to induce a secondary axis when transplanted to the animal pole of uninjected host embryos, indicating that nuclear beta-catenin also plays a role in the production of micromere-derived signals. To examine further the relationship between nuclear beta-catenin in vegetal nuclei and micromere signaling, we performed both transplantations and deletions of micromeres at the 16-cell stage and demonstrated that the accumulation of beta-catenin in vegetal nuclei does not require micromere-derived cues. Moreover, we demonstrate that cell autonomous signals appear to regulate the pattern of nuclear beta-catenin since dissociated blastomeres possessed nuclear beta-catenin in approximately the same proportion as that seen in intact embryos. Together, these data show that the accumulation of beta-catenin in nuclei of vegetal cells is regulated cell autonomously and that this localization is required for the establishment of all vegetal cell fates and the production of micromere-derived signals.


1998 ◽  
Vol 95 (16) ◽  
pp. 9343-9348 ◽  
Author(s):  
Athula H. Wikramanayake ◽  
Ling Huang ◽  
William H. Klein

In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal–vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal–vegetal axis. Our results also reveal similarities between the sea urchin animal–vegetal axis and the vertebrate dorsal–ventral axis, suggesting that these axes share a common evolutionary origin.


Sign in / Sign up

Export Citation Format

Share Document