Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells

Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
C.A. Ettensohn ◽  
S.W. Ruffins

An interaction between the two principal populations of mesodermal cells in the sea urchin embryo, primary and secondary mesenchyme cells (PMCs and SMCs, respectively), regulates SMC fates and the process of skeletogenesis. In the undisturbed embryo, skeletal elements are produced exclusively by PMCs. Certain SMCs also have the ability to express a skeletogenic phenotype; however, signals transmitted by the PMCs direct these cells into alternative developmental pathways. In this study, a combination of fluorescent cell-labeling methods, embryo microsurgery and cell-specific molecular markers have been used to study the lineage, numbers, normal fate(s) and developmental potential of the skeletogenic SMCs. Previous fate-mapping studies have shown that SMCs are derived from the veg2 layer of blastomeres of the 64-cell-stage embryo and from the small micromeres. By specifically labeling the small micromeres with 5-bromodeoxyuridine, we demonstrate that descendants of these cells do not participate in skeletogenesis in PMC-depleted larvae, even though they are the closest lineal relatives of PMCs. Skeletogenic SMCs are therefore derived exclusively from the veg2 blastomeres. Because the SMCs are a heterogeneous population of cells, we have sought to gain information concerning the normal fate(s) of skeletogenic SMCs by determining whether specific cell types are reduced or absent in PMC(−) larvae. Of the four known SMC derivatives: pigment cells, blastocoelar (basal) cells, muscle cells and coelomic pouch cells, only pigment cells show a major reduction (> 50%) in number following SMC skeletogenesis. We therefore propose that the PMC-derived signal regulates a developmental switch, directing SMCs to adopt a pigment cell phenotype instead of a default (skeletogenic) fate. Ablation of SMCs at the late gastrula stage does not result in the recruitment of any additional skeletogenic cells, demonstrating that, by this stage, the number of SMCs with skeletogenic potential is restricted to 60–70 cells. Previous studies showed that during their switch to a skeletogenic fate, SMCs alter their migratory behavior and cell surface properties. In this study, we demonstrate that during conversion, SMCs become insensitive to the PMC-derived signal, while at the same time they acquire PMC-specific signaling properties.

Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 43-51 ◽  
Author(s):  
Charles A. Ettensohn

Cell interactions during gastrulation play a key role in the determination of mesodermal cell fates in the sea urchin embryo. An interaction between primary and secondary mesenchyme cells (PMCs and SMCs, respectively), the two principal populations of mesodermal cells, regulates the expression of SMC fates. PMCs are committed early in cleavage to express a skeletogenic phenotype. During gastrulation, they transmit a signal that suppresses the skeletogenic potential of a subpopulation of SMCs and directs these cells into an alternative developmental pathway. This review summarizes present information concerning the cellular basis of the PMC-SMC interaction, as analyzed by cell transplantation and ablation experiments, fluorescent cell labeling methods and the use of cell type-specific molecular markers. The nature and stability of SMC fate switching, the timing of the PMC-SMC interaction and its quantitative characteristics, and the lineage, numbers and normal fate of the population of skeletogenic SMCs are discussed. Evidence is presented indicating that PMCs and SMCs come into direct filopodial contact during the late gastrula stage, when the signal is transmitted. Finally, evolutionary questions raised by these studies are briefly addressed.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 255-265 ◽  
Author(s):  
J.A. Anstrom ◽  
J.E. Chin ◽  
D.S. Leaf ◽  
A.L. Parks ◽  
R.A. Raff

In this report, we use a monoclonal antibody (B2C2) and antibodies against a fusion protein (Leaf et al. 1987) to characterize msp130, a cell surface protein specific to the primary mesenchyme cells of the sea urchin embryo. This protein first appears on the surface of these cells upon ingression into the blastocoel. Immunoelectronmicroscopy shows that msp130 is present in the trans side of the Golgi apparatus and on the extracellular surface of primary mesenchyme cells. Four precursor proteins to msp130 are identified and we show that B2C2 recognizes only the mature form of msp130. We demonstrate that msp130 contains N-linked carbohydrate groups and that the B2C2 epitope is sensitive to endoglycosidase F digestion. Evidence that msp130 is apparently a sulphated glycoprotein is presented. The recognition of the B2C2 epitope of msp130 is disrupted when embryos are cultured in sulphate-free sea water. In addition, two-dimensional immunoblots show that msp130 is an acidic protein that becomes substantially less acidic in the absence of sulphate. We also show that two other independently derived monoclonal antibodies, IG8 (McClay et al. 1983; McClay, Matranga & Wessel, 1985) and 1223 (Carson et al. 1985), recognize msp130, and suggest this protein to be a major cell surface antigen of primary mesenchyme cells.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 33-41 ◽  
Author(s):  
David R. McClay ◽  
Norris A. Armstrong ◽  
Jeff Hardin

The sea urchin embryo follows a relatively simple cell behavioral sequence in its gastrulation movements. To form the mesoderm, primary mesenchyme cells ingress from the vegetal plate and then migrate along the basal lamina lining the blastocoel. The presumptive secondary mesenchyme and endoderm then invaginate from the vegetal pole of the embryo. The archenteron elongates and extends across the blastocoel until the tip of the archenteron touches and attaches to the opposite side of the blastocoel. Secondary mesenchyme cells, originally at the tip of the archenteron, differentiate to form a variety of structures including coelomic pouches, esophageai muscles, pigment cells and other cell types. After migration of the secondary mesenchyme cells from their original position at the tip of the archenteron, the endoderm fuses with an invagination of the ventral ectoderm (the stomodaem), to form the mouth and complete the process of gastrulation. A larval skeleton is made by primary mesenchyme cells during the time of archenteron and mouth formation. A number of experiments have established that these morphogenetic movements involve a number of cell autonomous behaviors plus a series of cell interactions that provide spatial, temporal and scalar information to cells of the mesoderm and endoderm. The cell autonomous behaviors can be demonstrated by the ability of micromeres or endoderm to perform their morphogenetic functions if either is isolated and grown in culture. The requirement for cell interactions has been demonstrated by manipulative experiments where it has been shown that axial information, temporal information, spatial information and scalar information is obtained by mesoderm and endoderm from other embryonic cells. This information governs the cell autonomous behavior and places the cells in the correct embryonic context.


Development ◽  
2001 ◽  
Vol 128 (13) ◽  
pp. 2615-2627 ◽  
Author(s):  
Xiaodong Zhu ◽  
Gregory Mahairas ◽  
Michele Illies ◽  
R. Andrew Cameron ◽  
Eric H. Davidson ◽  
...  

The primary mesenchyme cells (PMCs) of the sea urchin embryo have been an important model system for the analysis of cell behavior during gastrulation. To gain an improved understanding of the molecular basis of PMC behavior, a set of 8293 expressed sequenced tags (ESTs) was derived from an enriched population of mid-gastrula stage PMCs. These ESTs represented approximately 1200 distinct proteins, or about 15% of the mRNAs expressed by the gastrula stage embryo. 655 proteins were similar (P<10−7 by BLAST comparisons) to other proteins in GenBank, for which some information is available concerning expression and/or function. Another 116 were similar to ESTs identified in other organisms, but not further characterized. We conservatively estimate that sequences encoding at least 435 additional proteins were included in the pool of ESTs that did not yield matches by BLAST analysis. The collection of newly identified proteins includes many candidate regulators of primary mesenchyme morphogenesis, including PMC-specific extracellular matrix proteins, cell surface proteins, spicule matrix proteins and transcription factors. This work provides a basis for linking specific molecular changes to specific cell behaviors during gastrulation. Our analysis has also led to the cloning of several key components of signaling pathways that play crucial roles in early sea urchin development.


Development ◽  
2002 ◽  
Vol 129 (8) ◽  
pp. 1945-1955 ◽  
Author(s):  
Hyla C. Sweet ◽  
Michael Gehring ◽  
Charles A. Ettensohn

Signals from micromere descendants play a critical role in patterning the early sea urchin embryo. Previous work demonstrated a link between the induction of mesoderm by micromere descendants and the Notch signaling pathway. In this study, we demonstrate that these micromere descendants express LvDelta, a ligand for the Notch receptor. LvDelta is expressed by micromere descendants during the blastula stage, a time when signaling has been shown to occur. By a combination of embryo microsurgery, mRNA injection and antisense morpholino experiments, we show that expression of LvDelta by micromere descendants is both necessary and sufficient for the development of two mesodermal cell types, pigment cells and blastocoelar cells. We also demonstrate that LvDelta is expressed by macromere descendants during mesenchyme blastula and early gastrula stages. Macromere-derived LvDelta is necessary for blastocoelar cell and muscle cell development. Finally, we find that expression of LvDelta is sufficient to endow blastomeres with the ability to function as a vegetal organizing center and to coordinate the development of a complete pluteus larva.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S42-S43 ◽  
Author(s):  
Tetsuya Kominami

Sea urchin pluteus larvae contain dozens of pigment cells in their ectoderm. These pigment cells are the descendants of the veg2 blastomeres of the 60-cell stage embryo. According to the fate map made by Ruffins and Ettensohn, the prospective pigment cells occupy the central region of the vegetal plate. Most of these prospective pigment cells exclusively give rise to pigment cells. Therefore, specification of the pigment cell lineage should occur at some point between the 60-cell and mesenchyme blastula stage. However, the detailed process of the specification of the pigment lineage is unknown.When are pigment cells specified? Are cell interactions necessary for the specification? Do founder cells exist? To answer these questions, I treated embryos with Ca2+-free seawater during the cleavage stage and examined the number of pigment cells observed in pluteus larvae. Treatment at 5.5–8.5 h and especially 7.5–10.5 h postfertilisation markedly reduced the number of pigment cells. The decrease was statistically significant. On the other hand, the treatment at 3.5–6.5 h or 9.5–12.5 h never reduced the number of pigment cells. By examining the frequency of the appearance of embryos whose numbers of pigment cells were less than 20, it was also found that the numbers of pigment cells were frequently in multiples of 4. Embryos having 4, 8, 12, 16 and 20 pigment cells were more frequently observed. Statistics indicated that the frequency of appearance was not random. These results indicated that cell contacts are necessary for the specification of pigment cells and that the specification occurs from 7 to 10 h postfertilisation. The results also suggest that the founder cells, if they exist, divide twice before they differentiate into pigment cells.


Author(s):  
Bradley Moreno ◽  
Allessandra DiCorato ◽  
Alexander Park ◽  
Kellen Mobilia ◽  
Regina Knapp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document