Intracellular pH and intracellular free calcium responses to protein kinase C activators and inhibitors in Xenopus eggs

Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 461-470 ◽  
Author(s):  
N. Grandin ◽  
M. Charbonneau

Cell activation during fertilization of the egg of Xenopus laevis is accompanied by various metabolic changes, including a permanent increase in intracellular pH (pHi) and a transient increase in intracellular free calcium activity ([Ca2+]i). Recently, it has been proposed that protein kinase C (PKC) is an integral component of the Xenopus fertilization pathway (Bement and Capco, J. Cell Biol. 108, 885–892, 1989). Indeed, activators of PKC trigger cortical granule exocytosis and cortical contraction, two events of egg activation, without, however, releasing the cell cycle arrest (blocked in second metaphase of meiosis). In the egg of Xenopus, exocytosis as well as cell cycle reinitiation are supposed to be triggered by the intracellular Ca2+ transient. We report here that PKC activators do not induce the intracellular Ca2+ transient, or the activation-associated increase in pHi. These results suggest that the ionic responses to egg activation in Xenopus do not appear to depend on the activation of PKC. In addition, in eggs already pretreated with phorbol esters, those artificial activators that act by releasing Ca2+ intracellularly, triggered a diminished increase in pHi. Finally, sphingosine and staurosporine, two potent inhibitors of PKC, were found to trigger egg activation, suggesting that a decrease in PKC activity might be an essential event in the release of the metaphase block, in agreement with recent findings on the release of the prophase block in Xenopus oocytes (Varnold and Smith, Development 109, 597–604, 1990).

1993 ◽  
Vol 156 (1) ◽  
pp. 94-106 ◽  
Author(s):  
G.Ian Gallicano ◽  
Stella M. Schwarz ◽  
Robert W. McGaughey ◽  
David G. Capco

1990 ◽  
Vol 1 (3) ◽  
pp. 315-326 ◽  
Author(s):  
W M Bement ◽  
D G Capco

Transit into interphase of the first mitotic cell cycle in amphibian eggs is a process referred to as activation and is accompanied by an increase in intracellular free calcium [( Ca2+]i), which may be transduced into cytoplasmic events characteristic of interphase by protein kinase C (PKC). To investigate the respective roles of [Ca2+]i and PKC in Xenopus laevis egg activation, the calcium signal was blocked by microinjection of the calcium chelator BAPTA, or the activity of PKC was blocked by PKC inhibitors sphingosine or H7. Eggs were then challenged for activation by treatment with either calcium ionophore A23187 or the PKC activator PMA. BAPTA prevented cortical contraction, cortical granule exocytosis, and cleavage furrow formation in eggs challenged with A23187 but not with PMA. In contrast, sphingosine and H7 inhibited cortical granule exocytosis, cortical contraction, and cleavage furrow formation in eggs challenged with either A23187 or PMA. Measurement of egg [Ca2+]i with calcium-sensitive electrodes demonstrated that PMA treatment does not increase egg [Ca2+]i in BAPTA-injected eggs. Further, PMA does not increase [Ca2+]i in eggs that have not been injected with BAPTA. These results show that PKC acts downstream of the [Ca2+]i increase to induce cytoplasmic events of the first Xenopus mitotic cell cycle.


Author(s):  
Mohammed Iqbal Hasham ◽  
Steven L. Pelech ◽  
Hiroshi B. Koide ◽  
Charles Krieger

2006 ◽  
Vol 126 (6) ◽  
pp. 1348-1355 ◽  
Author(s):  
Bong K. Ahn ◽  
Se K. Jeong ◽  
Hee S. Kim ◽  
Ki J. Choi ◽  
Jung T. Seo ◽  
...  

1990 ◽  
Vol 268 (3) ◽  
pp. 627-632 ◽  
Author(s):  
A Sanchez-Bueno ◽  
C J Dixon ◽  
N M Woods ◽  
K S R Cuthbertson ◽  
P H Cobbold

Many cells generate oscillations in cytoplasmic free Ca2+ concentration (‘free Ca’) when stimulated with Ca-mobilizing hormones. The frequency of repetitive free-Ca transients in a rat hepatocyte is a function of hormone concentration and can be depressed by phorbol esters. We show here that the protein kinase C (PKC) inhibitors staurosporine and sphingosine can reverse the effects of phorbol dibutyrate on the frequency of free-Ca transients induced by phenylephrine or vasopressin. An important feature of the hepatocyte free-Ca oscillator is that the transient's time course, particularly the rate of fall of free Ca from peak to resting, depends on the species of agonist, and is measurably different for phenylephrine, vasopressin, angiotensin II or ATP. We show here that the rate of fall of free Ca in transients induced by phenylephrine or vasopressin is markedly decreased after treatment of the cells with a PKC inhibitor. A receptor-controlled oscillator model is discussed, in which PKC provides negative feedback during the falling phase of free-Ca transients.


1997 ◽  
Vol 325 (2) ◽  
pp. 383-389 ◽  
Author(s):  
Laurence DAULHAC ◽  
Aline KOWALSKI-CHAUVEL ◽  
Lucien PRADAYROL ◽  
Nicole VAYSSE ◽  
Catherine SEVA

The proliferative effects of gastrin on normal and neoplastic gastro-intestinal tissues have been shown to be mediated by the gastrin/CCKB (G/CCKB) G-protein-coupled receptors. We have recently reported that gastrin stimulates the tyrosine phosphorylation of Shc proteins and their subsequent association with the Grb2/Sos complex, leading to mitogen-activated protein kinase (MAPK) activation, a pathway known to play an important role in cell proliferation. We undertook the present study to characterize the signalling pathways used by this receptor to mediate the activation of the Shc/Grb2 complex. Since G/CCKB receptor occupancy leads to the activation of the phospholipase C (PLC)/protein kinase C (PKC) pathway, we examined whether PKC stimulation and Ca2+ mobilization contribute to the phosphorylation of Shc proteins and their association with Grb2 in response to gastrin. Our results indicate that Shc proteins are tyrosine phosphorylated and associate with Grb2 in response to phorbol esters, suggesting that activation of PKC is a potential signalling pathway leading to activation of the Shc/Grb2 complex. Inhibition of PKC by GF109203X completely blocked the effect of PMA on Shc tyrosine phosphorylation and its subsequent association with Grb2, but had a partial inhibitory effect on the response to gastrin. Depletion of the intracellular Ca2+ pools by treatment with thapsigargin blocked the increase in intracellular free calcium concentration induced by gastrin and diminished the ability of the peptide to stimulate Shc phosphorylation and recruitment of Grb2. In addition, removal of extracellular Ca2+ partially inhibited the effect of gastrin on Shc phosphorylation as well as its association with Grb2, indicating that the effects of gastrin are also mediated by Ca2+-dependent mechanisms. Furthermore, we show that blockage of the two major early signals generated by activation of PLC, which induced the activation of the Shc/Grb2 complex, also blocked gastrin-induced MAPK activation.


1995 ◽  
Vol 88 (3) ◽  
pp. 277-283 ◽  
Author(s):  
R. M. Touyz ◽  
E. L. Schiffrin

1. Endothelin-1 has anti-aggregatory properties, but the mechanism underlying this inhibitory action is unknown. This in vitro study investigates effects of endothelin-1 on thrombin-stimulated aggregation and intracellular free calcium concentration in human platelets and assesses the role of protein kinase C in the interactions between endothelin-1 and thrombin. Aggregation was measured turbidometrically and the intracellular free calcium concentration was determined with the fluorescent indicator fura 2-acetoxymethyl ester. 2. Endothelin-1 at concentrations from 10−11 to 10−6 mol/l had no effect on platelet aggregation or intracellular free calcium concentration but inhibited in a dose-dependent manner aggregation induced by 0.05 unit/ml thrombin (pD2 for inhibition by endothelin = 8.1 ± 0.12). 3. Endothelin-1 at 10−9 mol/l significantly decreased (P<0.01) thrombin-stimulated aggregation from 81.4 ± 1.5% (in the absence of endothelin-1) to 53.5 ± 1.1% (in the presence of endothelin) and thrombin-stimulated intracellular free calcium concentration from 179 ± 1.7 nmol/l to 140 ± 1.8 nmol/l. 4. Preincubation of platelets with 10−7 mol/l staurosporine (protein kinase C inhibitor), calphostin C (highly selective protein kinase C inhibitor) or 5-(N,N-hexamethylene) amiloride (highly selective Na+-H+ exchange blocker) significantly inhibited (P < 0.01) thrombin-stimulated platelet responses and suppressed the inhibitory effect of endothelin-1 on thrombin-induced aggregation and intracellular free calcium concentration. 5. In conclusion, endothelin-1 decreases the aggregatory response of human platelets to thrombin by mechanisms that probably involve protein kinase C and Na+-H+ linked pathways.


Sign in / Sign up

Export Citation Format

Share Document