Ontogeny of hyaluronan secretion during early mouse development

Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 483-492 ◽  
Author(s):  
J.J. Brown ◽  
V.E. Papaioannou

The ontogeny of hyaluronan (HA) secretion during early mouse embryogenesis has been investigated using a biotin-labelled HA-binding complex from cartilage proteoglycan. HA is first secreted by visceral endoderm cells of the early egg cylinder on day 5.5 post coitum (p.c.), predominantly into the expanding yolk cavity. On day 6.5 p.c., HA is present in both the yolk and proamniotic cavities, but pericellular staining is restricted to the visceral endoderm and a population of embryonic ectoderm cells at the antimesometrial end of the proamniotic cavity. By the primitive streak stage, HA is secreted into the ectoplacental, exocoelomic, amniotic and yolk cavities, whilst the only cells exhibiting pericellular staining are those of the embryonic and extraembryonic mesoderm, including the allantois. Comparisons of HA-staining patterns of cultured whole blastocysts, microdissected trophectoderm fragments and immunosurgically isolated inner cell masses, revealed no trophoblast-associated HA secretion during outgrowth in vitro but significant synthetic activity by the endodermal derivatives of differentiating inner cell masses. To identify the cell lineages responsible for secretion of HA into the embryonic cavities and to investigate the origin of the HA observed around migrating mesoderm cells, day 7.5 p.c. primitive streak stage conceptuses were dissected into their various embryonic and extraembryonic cell lineages. HA secretion was observed after short-term suspension culture of mesoderm, embryonic ectoderm and embryonic endoderm, but was undetectable in fragments of ectoplacental cone, parietal yolk sac (primary giant trophoblast and parietal endoderm), extraembryonic ectoderm or extraembryonic endoderm. The level of synthesis by the HA-positive tissues was markedly enhanced by culture in medium containing serum, compared with that obtained following culture in medium supplemented with a defined serum substitute containing insulin, transferrin, selenous acid and linoleic acid. This suggests that additional growth factors, present in serum but absent from the serum substitute, are required for optimal HA synthesis by the HA-secreting tissues in vitro, and probably also in vivo. The implications of these events for implantation and the development of peri- and early post-implantation mouse embryos are discussed, and a new role for HA in the initial formation and expansion of the embryonic cavities is proposed.

2008 ◽  
Vol 28 (22) ◽  
pp. 6819-6827 ◽  
Author(s):  
Tobias Goller ◽  
Franz Vauti ◽  
Suresh Ramasamy ◽  
Hans-Henning Arnold

ABSTRACT The putative transcriptional regulator BPTF/FAC1 is expressed in embryonic and extraembryonic tissues of the early mouse conceptus. The extraembryonic trophoblast lineage in mammals is essential to form the fetal part of the placenta and hence for the growth and viability of the embryo in utero. Here, we describe a loss-of-function allele of the BPTF/FAC1 gene that causes embryonic lethality in the mouse. BPTF/FAC1-deficient embryos form apparently normal blastocysts that implant and develop epiblast, visceral endoderm, and extraembryonic ectoderm including trophoblast stem cells. Subsequent development of mutants, however, is arrested at the early gastrula stage (embryonic day 6.5), and virtually all null embryos die before midgestation. Most notably, the ectoplacental cone is drastically reduced or absent in mutants, which may cause the embryonic lethality. Development of the mutant epiblast is also affected, as the anterior visceral endoderm and the primitive streak do not form correctly, while brachyury-expressing mesodermal cells arise but are delayed. The mutant phenotype suggests that gastrulation is initiated, but no complete anteroposterior axis of the epiblast appears. We conclude that BPTF/FAC1 is essential in the extraembryonic lineage for correct development of the ectoplacental cone and fetomaternal interactions. In addition, BPTF/FAC1 may also play a role either directly or indirectly in anterior-posterior patterning of the epiblast.


Zygote ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 340-347 ◽  
Author(s):  
Tomoka Hisaki ◽  
Ikuma Kawai ◽  
Koji Sugiura ◽  
Kunihiko Naito ◽  
Kiyoshi Kano

SummaryMammals self-regulate their body size throughout development. In the uterus, embryos are properly regulated to be a specific size at birth. Previously, size and cell number in aggregated embryos, which were made from two or more morulae, and half embryos, which were halved at the 2-cell stage, have been analysed in vivo in preimplantation and post-implantation development in mice. Here, we examined whether or not the mouse embryo has the capacity to self-regulate growth using an in vitro culture system. To elucidate embryonic histology, cells were counted in aggregated or half embryos in comparison with control embryos. Both double- and triple-aggregated embryos contained more cells than did control embryos during all culture periods, and the relative growth ratios showed no growth inhibition in an in vitro culture system. Meanwhile, half embryos contained fewer cells than control embryos, but the number grew throughout the culture period. Our data suggest that the growth of aggregated embryos is not affected and continues in an in vitro culture system. On the other hand, the growth of half embryos accelerates and continues in an in vitro culture system. This situation, in turn, implied that post-implantation mouse embryos might have some potential to regulate their own growth and size as seen by using an in vitro culture system without uterus factors. In conclusion, our results indicated that embryos have some ways in which to regulate their own size in mouse early development.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 87-104
Author(s):  
R. S. P. Beddington

The potency of 8th day mouse embryonic ectoderm cells has been studied by injecting them into synchronous embryos which were subsequently cultured for 36 h. The development of injected embryos in vitro was comparable to that of embryos maintained in vivo. Tritiated thymidine was used to label the donor cells so that chimaerism could be analysed histologically. The results demonstrate the pluripotency of embryonic ectoderm in situ in the late primitive-streak-stage embryo. In addition, the patterns of donor cell colonization vary according to the site of origin and injection of the donor tissue.


2020 ◽  
Vol 7 (2) ◽  
pp. 36 ◽  
Author(s):  
João P. Cotovio ◽  
Tiago G. Fernandes

Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2753-2759 ◽  
Author(s):  
Qiurong Liu ◽  
Fouad Shalaby ◽  
Jamie Jones ◽  
Denis Bouchard ◽  
Daniel J. Dumont

Ship is a recently identified SH2-containing inositol polyphosphate 5-phosphatase that has been implicated as an important signaling molecule in cell-culture systems. To understand the physiologic function of Ship in vivo, we performed expression studies of Ship during mouse development. Results of this study demonstrate the expression of ship to be in late primitive-streak stage embryos (7.5 days postcoitus [dpc]), when hematopoiesis is thought to begin, and the expression is restricted to the hematopoietic lineage in mouse embryo. In adult mice, Ship expression continues to be in the majority of cells from hematopoietic origin, including granulocytes, monocytes, and lymphocytes, and is also found in the spermatids of the testis. Furthermore, the level of Ship expression is developmentally regulated during T-cell maturation. These results suggest a possible role for Ship in the differentiation and maintenance of the hematopoietic lineages and in spermatogenesis.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3455-3468 ◽  
Author(s):  
Dominic P. Norris ◽  
Jane Brennan ◽  
Elizabeth K. Bikoff ◽  
Elizabeth J. Robertson

The TGFβ-related growth factor Nodal governs anteroposterior (AP) and left-right (LR) axis formation in the vertebrate embryo. A conserved intronic enhancer (ASE), containing binding sites for the fork head transcription factor Foxh1, modulates dynamic patterns of Nodal expression during early mouse development. This enhancer is responsible for early activation of Nodal expression in the epiblast and visceral endoderm, and at later stages governs asymmetric expression during LR axis formation. We demonstrate ASE activity is strictly Foxh1 dependent. Loss of this autoregulatory enhancer eliminates transcription in the visceral endoderm and decreases Nodal expression in the epiblast, but causes surprisingly discrete developmental abnormalities. Thus lowering the level of Nodal signaling in the epiblast disrupts both orientation of the AP axis and specification of the definitive endoderm. Targeted removal of the ASE also dramatically reduces left-sided Nodal expression, but the early events controlling LR axis specification are correctly initiated. However loss of the ASE disrupts Lefty2 (Leftb) expression and causes delayed Pitx2 expression leading to late onset, relatively minor LR patterning defects. The feedback loop is thus essential for maintenance of Nodal signals that selectively regulate target gene expression in a temporally and spatially controlled fashion in the mouse embryo.


Development ◽  
1973 ◽  
Vol 29 (1) ◽  
pp. 159-174
Author(s):  
Nelly Bennett

The detection of a specific enzyme (cysteine lyase) of the yolk-sac endoderm by a very sensitive method is employed to characterize cell differentiation during the early stages of endoderm organogenesis in the chick. The first cells to contain active cysteine lyase are found in the germ wall at the primitive streak stage. In vivo observations establish a relation between the morphological specialization and organization of endodermal cells, their loss of mitotic activity and the increase in cysteine lyase activity. They suggest an influence of the mesoderm on endoderm differentiation. In vitro experiments confirm the existence in the yolk-sac endoderm of an incompatibility between cell proliferation and differentiation, as well as the action of the mesoderm on both the structural organization of the endoblast and the appearance of cysteine lyase; this last action seems to be due mainly to blood cells; chicken and rabbit blood cells are equally active. The problems of the origin of the endoderm and of the interactions occurring during the organogenesis of the yolk-sac endoderm are discussed.


Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 189-201 ◽  
Author(s):  
N. Takagi ◽  
K. Abe

Matings between female mice carrying Searle's translocation, T(X;16)16H, and normal males give rise to chromosomally unbalanced zygotes with two complete sets of autosomes, one normal X chromosome and one X16 translocation chromosome (XnX16 embryos). Since X chromosome inactivation does not occur in these embryos, probably due to the lack of the inactivation center on X16, XnX16 embryos are functionally disomic for the proximal 63% of the X chromosome and trisomic for the distal segment of chromosome 16. Developmental abnormalities found in XnX16 embryos include: (1) growth retardation detected as early as stage 9, (2) continual loss of embryonic ectoderm cells either by death or by expulsion into the proamniotic cavity, (3) underdevelopment of the ectoplacental cone throughout the course of development, (4) very limited, if any, mesoderm formation, (5) failure in early organogenesis including the embryo, amnion, chorion and yolk sac. Death occurred at 10 days p.c. Since the combination of XO and trisomy 16 does not severely affect early mouse development, it is likely that regulatory mechanisms essential for early embryogenesis do not function correctly in XnX16 embryos due to activity of the extra X chromosome segment of X16.


Sign in / Sign up

Export Citation Format

Share Document