Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 567-578 ◽  
Author(s):  
A.P. Monaghan ◽  
K.H. Kaestner ◽  
E. Grau ◽  
G. Schutz

The HNF-3 alpha, beta and gamma genes constitute a family of transcription factors that are required for hepatocyte-specific gene expression of a number of genes, e.g. transthyretin, alpha-1 antitrypsin and tyrosine aminotransferase. These genes share a highly conserved DNA-binding domain first found in the Drosophila gene, forkhead, which is required for the normal patterning of the developing gut and central nervous system in Drosophila. In adult mouse tissues, transcripts from HNF-3 alpha and beta have been localised to the liver, intestine and lung, whereas HNF-3 gamma is found in the liver, intestine and testis. In light of the early developmental significance of forkhead in Drosophila, we have compared the patterns of expression of HNF-3 alpha, beta and gamma mRNAs during murine embryogenesis. We find that these genes are sequentially activated during development in the definitive endoderm. HNF-3 beta mRNA is expressed in the node at the anterior end of the primitive streak in all three germ layers and is the first gene of this family to be activated. Subsequently, HNF-3 alpha is transcribed in the primitive endoderm in the region of the invaginating foregut and HNF-3 gamma appears upon hindgut differentiation. These genes have different anterior boundaries of mRNA expression in the developing endoderm and transcripts are found in all endoderm-derived structures that differentiate posterior to this boundary. Therefore, we propose that these genes define regionalization within the definitive endoderm. Furthermore, differential mRNA expression of HNF-3 alpha and beta is detected in cells of the ventral neural epithelium, chordamesoderm and notochord. In the neural epithelium, expression of HNF-3 alpha and beta mRNA becomes localised to cells of the floor plate. We propose that, in addition to their characterised requirement for liver-specific gene expression, HNF-3 alpha and beta are required for mesoderm and neural axis formation. We also conclude that HNF-3 beta is the true orthologue of the Drosophila forkhead gene.

1992 ◽  
Vol 4 (11) ◽  
pp. 1383-1404 ◽  
Author(s):  
G N Drews ◽  
T P Beals ◽  
A Q Bui ◽  
R B Goldberg

2008 ◽  
Vol 180 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Nadia Goué ◽  
Marie-Claude Lesage-Descauses ◽  
Ewa J. Mellerowicz ◽  
Elisabeth Magel ◽  
Philippe Label ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. e1007503 ◽  
Author(s):  
Christopher A. Bell ◽  
Catherine J. Lilley ◽  
James McCarthy ◽  
Howard J. Atkinson ◽  
P. E. Urwin

2019 ◽  
Author(s):  
Sabina Kanton ◽  
Michael James Boyle ◽  
Zhisong He ◽  
Malgorzata Santel ◽  
Anne Weigert ◽  
...  

ABSTRACTThe human brain has changed dramatically since humans diverged from our closest living relatives, chimpanzees and the other great apes1–5. However, the genetic and developmental programs underlying this divergence are not fully understood6–8. Here, we have analyzed stem cell-derived cerebral organoids using single-cell transcriptomics (scRNA-seq) and accessible chromatin profiling (scATAC-seq) to explore gene regulatory changes that are specific to humans. We first analyze cell composition and reconstruct differentiation trajectories over the entire course of human cerebral organoid development from pluripotency, through neuroectoderm and neuroepithelial stages, followed by divergence into neuronal fates within the dorsal and ventral forebrain, midbrain and hindbrain regions. We find that brain region composition varies in organoids from different iPSC lines, yet regional gene expression patterns are largely reproducible across individuals. We then analyze chimpanzee and macaque cerebral organoids and find that human neuronal development proceeds at a delayed pace relative to the other two primates. Through pseudotemporal alignment of differentiation paths, we identify human-specific gene expression resolved to distinct cell states along progenitor to neuron lineages in the cortex. We find that chromatin accessibility is dynamic during cortex development, and identify instances of accessibility divergence between human and chimpanzee that correlate with human-specific gene expression and genetic change. Finally, we map human-specific expression in adult prefrontal cortex using single-nucleus RNA-seq and find developmental differences that persist into adulthood, as well as cell state-specific changes that occur exclusively in the adult brain. Our data provide a temporal cell atlas of great ape forebrain development, and illuminate dynamic gene regulatory features that are unique to humans.


Oncotarget ◽  
2017 ◽  
Vol 8 (37) ◽  
pp. 60809-60825
Author(s):  
Matthias Zimmermann ◽  
Lucian Beer ◽  
Robert Ullrich ◽  
Dominika Lukovic ◽  
Elisabeth Simader ◽  
...  

1992 ◽  
Vol 4 (11) ◽  
pp. 1383 ◽  
Author(s):  
Gary N. Drews ◽  
Thomas P. Beals ◽  
Anhthu Q. Bui ◽  
Robert B. Goldberg

Sign in / Sign up

Export Citation Format

Share Document