scholarly journals Single-cell genomic atlas of great ape cerebral organoids uncovers human-specific features of brain development

2019 ◽  
Author(s):  
Sabina Kanton ◽  
Michael James Boyle ◽  
Zhisong He ◽  
Malgorzata Santel ◽  
Anne Weigert ◽  
...  

ABSTRACTThe human brain has changed dramatically since humans diverged from our closest living relatives, chimpanzees and the other great apes1–5. However, the genetic and developmental programs underlying this divergence are not fully understood6–8. Here, we have analyzed stem cell-derived cerebral organoids using single-cell transcriptomics (scRNA-seq) and accessible chromatin profiling (scATAC-seq) to explore gene regulatory changes that are specific to humans. We first analyze cell composition and reconstruct differentiation trajectories over the entire course of human cerebral organoid development from pluripotency, through neuroectoderm and neuroepithelial stages, followed by divergence into neuronal fates within the dorsal and ventral forebrain, midbrain and hindbrain regions. We find that brain region composition varies in organoids from different iPSC lines, yet regional gene expression patterns are largely reproducible across individuals. We then analyze chimpanzee and macaque cerebral organoids and find that human neuronal development proceeds at a delayed pace relative to the other two primates. Through pseudotemporal alignment of differentiation paths, we identify human-specific gene expression resolved to distinct cell states along progenitor to neuron lineages in the cortex. We find that chromatin accessibility is dynamic during cortex development, and identify instances of accessibility divergence between human and chimpanzee that correlate with human-specific gene expression and genetic change. Finally, we map human-specific expression in adult prefrontal cortex using single-nucleus RNA-seq and find developmental differences that persist into adulthood, as well as cell state-specific changes that occur exclusively in the adult brain. Our data provide a temporal cell atlas of great ape forebrain development, and illuminate dynamic gene regulatory features that are unique to humans.

2021 ◽  
Author(s):  
Dmitry Velmeshev ◽  
Manideep Chavali ◽  
Tomasz Jan Nowakowski ◽  
Mohini Bhade ◽  
Simone Mayer ◽  
...  

Cortical interneurons are indispensable for proper function of neocortical circuits. Changes in interneuron development and function are implicated in human disorders, such as autism spectrum disorder and epilepsy. In order to understand human-specific features of cortical development as well as the origins of neurodevelopmental disorders it is crucial to identify the molecular programs underlying human interneuron development and subtype specification. Recent studies have explored gene expression programs underlying mouse interneuron specification and maturation. We applied single-cell RNA sequencing to samples of second trimester human ganglionic eminence and developing cortex to identify molecularly defined subtypes of human interneuron progenitors and immature interneurons. In addition, we integrated this data from the developing human ganglionic eminences and neocortex with single-nucleus RNA-seq of adult cortical interneurons in order to elucidate dynamic molecular changes associated with commitment of progenitors and immature interneurons to mature interneuron subtypes. By comparing our data with published mouse single-cell genomic data, we discover a number of divergent gene expression programs that distinguish human interneuron progenitors from mouse. Moreover, we find that a number of transcription factors expressed during prenatal development become restricted to adult interneuron subtypes in the human but not the mouse, and these adult interneurons express species- and lineage-specific cell adhesion and synaptic genes. Therefore, our study highlights that despite the similarity of main principles of cortical interneuron development and lineage commitment between mouse and human, human interneuron genesis and subtype specification is guided by species-specific gene programs, contributing to human-specific features of cortical inhibitory interneurons.


1992 ◽  
Vol 4 (11) ◽  
pp. 1383-1404 ◽  
Author(s):  
G N Drews ◽  
T P Beals ◽  
A Q Bui ◽  
R B Goldberg

2020 ◽  
Vol 30 (1) ◽  
pp. 42-56
Author(s):  
D. E. Paula Junior ◽  
M. T. Oliveira ◽  
J. J. Bruscadin ◽  
D. G. Pinheiro ◽  
A. D. Bomtorin ◽  
...  

2008 ◽  
Vol 180 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Nadia Goué ◽  
Marie-Claude Lesage-Descauses ◽  
Ewa J. Mellerowicz ◽  
Elisabeth Magel ◽  
Philippe Label ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. e1007503 ◽  
Author(s):  
Christopher A. Bell ◽  
Catherine J. Lilley ◽  
James McCarthy ◽  
Howard J. Atkinson ◽  
P. E. Urwin

Cell Systems ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169-182.e5 ◽  
Author(s):  
Supriya Sen ◽  
Zhang Cheng ◽  
Katherine M. Sheu ◽  
Yu Hsin Chen ◽  
Alexander Hoffmann

Sign in / Sign up

Export Citation Format

Share Document