somite stage
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 2)

H-INDEX

18
(FIVE YEARS 0)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009908
Author(s):  
Tie-Bo Zeng ◽  
Nicholas Pierce ◽  
Ji Liao ◽  
Purnima Singh ◽  
Kin Lau ◽  
...  

EHMT2 is the main euchromatic H3K9 methyltransferase. Embryos with zygotic, or maternal mutation in the Ehmt2 gene exhibit variable developmental delay. To understand how EHMT2 prevents variable developmental delay we performed RNA sequencing of mutant and somite stage-matched normal embryos at 8.5–9.5 days of gestation. Using four-way comparisons between delayed and normal embryos we clarified what it takes to be normal and what it takes to develop. We identified differentially expressed genes, for example Hox genes that simply reflected the difference in developmental progression of wild type and the delayed mutant uterus-mate embryos. By comparing wild type and zygotic mutant embryos along the same developmental window we detected a role of EHMT2 in suppressing variation in the transcriptional switches. We identified transcription changes where precise switching during development occurred only in the normal but not in the mutant embryo. At the 6-somite stage, gastrulation-specific genes were not precisely switched off in the Ehmt2−/− zygotic mutant embryos, while genes involved in organ growth, connective tissue development, striated muscle development, muscle differentiation, and cartilage development were not precisely switched on. The Ehmt2mat−/+ maternal mutant embryos displayed high transcriptional variation consistent with their variable survival. Variable derepression of transcripts occurred dominantly in the maternally inherited allele. Transcription was normal in the parental haploinsufficient wild type embryos despite their delay, consistent with their good prospects. Global profiling of transposable elements revealed EHMT2 targeted DNA methylation and suppression at LTR repeats, mostly ERVKs. In Ehmt2−/− embryos, transcription over very long distances initiated from such misregulated ‘driver’ ERVK repeats, encompassing a multitude of misexpressed ‘passenger’ repeats. In summary, EHMT2 reduced transcriptional variation of developmental switch genes and developmentally switching repeat elements at the six-somite stage embryos. These findings establish EHMT2 as a suppressor of transcriptional and developmental variation at the transition between gastrulation and organ specification.


2021 ◽  
Author(s):  
Tie-Bo Zeng ◽  
Nicholas Pierce ◽  
Ji Liao ◽  
Purnima Singh ◽  
Wanding Zhou ◽  
...  

Embryos that carry zygotic or parental mutations in Ehmt2, the gene encoding the main euchromatic histone H3K9 methyltransferase, EHMT2, exhibit variable developmental delay. We asked the question whether the delayed embryo is different transcriptionally from the normally developing embryo when they reach the same developmental stage. We collected embryos carrying a series of genetic deficiencies in the Ehmt2 gene and performed total RNA sequencing of somite stage-matched individual embryos. We applied novel four-way comparisons to detect differences between normal versus deficient embryos, and between 12-somite and 6-somite embryos. Importantly, we also identified developmental changes in transcription that only occur during the development of the normal embryo. We found that at the 6-somite stage, gastrulation-specific genes were not precisely turned off in the Ehmt2-/- embryos, and genes involved in organ growth, connective tissue development, striated muscle development, muscle differentiation, and cartilage development were not precisely switched on in the Ehmt2-/- embryos. Zygotic EHMT2 reduced transcriptional variation of developmental switch genes and at some repeat elements at the six-somite stage embryos. Maternal EHMT2-mutant embryos also displayed great transcriptional variation consistent with their variable survival, but transcription was normal in developmentally delayed parental haploinsufficient embryos, consistent with their good prospects. Global profiling of transposable elements in the embryo revealed that specific repeat classes responded to EHMT2. DNA methylation was specifically targeted by EHMT2 to LTR repeats, mostly ERVKs. Long noncoding transcripts initiated from those misregulated driver repeats in Ehmt2-/- embryos, and extended to several hundred kilobases, encompassing a multitude of additional, similarly misexpressed passenger repeats. These findings establish EHMT2 as an important regulator of the transition between gastrulation programs and organ specification programs and of variability.


2015 ◽  
Vol 77 (5) ◽  
pp. 587-591 ◽  
Author(s):  
Mami UEMURA ◽  
Hitomi IGARASHI ◽  
Aisa OZAWA ◽  
Naoki TSUNEKAWA ◽  
Masamichi KUROHMARU ◽  
...  

2012 ◽  
Vol 128 (11-12) ◽  
pp. 597-609 ◽  
Author(s):  
Rika Miki ◽  
Tetsu Yoshida ◽  
Kazuya Murata ◽  
Shinya Oki ◽  
Kazuhiko Kume ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 153 ◽  
Author(s):  
E. Østrup ◽  
M. Vejlsted ◽  
M. B. Nielsen ◽  
M. T. Madsen ◽  
P. Maddox-Hyttel

It is generally accepted that 30% of the embryos in a porcine litter die within the first 40 days of pregnancy (Pope WP and First NL 1985 Theriogenology 23, 91–105). The aim of the study was to investigate the dynamics of embryonic mortality from the 2nd to the 7th week of pregnancy in a homogeneous pig population in order to test whether this dogma holds true. A total of 141 pregnant Danish Landrace × Yorkshire gilts were divided into three groups dependent on gestational length: Group 1 (Days 9 to 24 post insemination (p.i.)): At Days 9 to 18 p.i., embryos were collected by flushing the uterine horns with PBS containing 1% serum. At Days 19 to 24, embryos were identified in situ by opening of the horns along the anti-mesometrial side. All embryos were staged according to the morphological appearance of embryo proper. Pre-somite stage embryos were categorized as either: Hatched blastocysts, pre-streak 1, pre-streak 2, primitive streak, or neural groove stage embryos (Vejlsted M et al. 2006 Mol. Reprod. Dev. 73, 709–718). Somite stage embryos were staged according to the number of somites. All embryos in Group 2 (Days 24.5 to 33 p.i.) and Group 3 (Days 40.5 to 47 p.i.) were identified in situ by opening the uterine horns as described above. The localization in the uterus and the Crown Rump Length (CRL) was recorded for all embryos in these groups. The average embryo recovery rate, (i.e. the ratio between the numbers of recovered embryos and the CL numbers) was 82%. Moreover, there were no significant differences between the groups with respect to the embryo recovery rate, signaling the absence of continued embryonic mortality. No significant correlations were obtained between the location of the embryos in the uterus and the CRL (only measured for Groups 2 and 3). Our data indicate that (1) the level of embryonic mortality was less than 10 to 15% and (2) there was no continued embryonic mortality occurring between Days 9 to 47 p.i. This is in great contrast to previous reports. Furthermore, there is no evidence that the location in the uterine horn has any influence on the embryonic development. Table 1.The average numbers of corpora lutea (CL), embryos, and the embryo recovery rates in gilts at different time points after insemination The Danish Research Council for Technology and Production Sciences.


2007 ◽  
Vol 19 (1) ◽  
pp. 194
Author(s):  
K. Schauser ◽  
T. S. Sundkvist ◽  
M. Vejlsted ◽  
P. Maddox-Hyttel

In the mouse, the transcription factor SOX-2 is known to have at least 2 roles: (1) it acts as a co-factor of the transcription factor OCT-4, the key regulator of pluripotency essential for the development of the inner cell mass/epiblast; and (2) it is involved in the direction of neural development. In this study, we elucidate the localization of SOX-2 in early porcine embryos in relation to that of OCT-4 and the early neuronal marker β-tubulin III. Embryos were flushed from uteri, fixed in 4% paraformaldehyde, and processed for paraffin sectioning. Sections (5 �m) were stained with anti-OCT-3/4 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) using the ABC-AEC-method and counterstained with hematoxylin, or processed for double immunofluorescent staining using antibodies against SOX-2 (R&D Systems Europa, Ltd., Abington, Oxon, UK) and β-tubulin III (Sigma-Aldrich Denmark A/S, Copenhagen, Denmark) and counterstaining with Hoechst. The embryos were classified as pre-streak (n = 8), primitive streak (n = 4), neural groove (n = 5), and somite (n = 4) stage (Vejlsted et al. 2006 Mol. Reprod. Dev. 73, 709–718). At the early pre-streak stage, SOX-2 and OCT-4 staining was found in the nuclei and a weak β-tubulin III staining in the cytoplasm of all epiblast cells. At the late pre-streak and the primitive streak stage, SOX-2 staining became polarized to the nuclei in the anterior epiblast region, whereas OCT-4 staining was found in all nuclei of the epiblast and of the forming meso- and endoderm. The β-tubulin III staining was restricted to the epiblast and showed no anterior-posterior polarization. At the primitive streak, when cells were involuting to form the meso- and endoderm, SOX-2 staining of nuclei was absent. At the neural groove stage, the SOX-2 and β-tubulin III staining was localized to nuclei and cytoplasm, respectively, of the same cells and observed in the neural plate and groove. A polarization in SOX-2 staining was observed in an anterior-posterior direction. At the somite stage, the SOX-2 and β-tubulin III staining was again localized to the same cells and observed in the neuropores and neural tube. The SOX-2 staining of the neural tube was polarized in a dorso-ventral direction. At the neural groove and somite stage, the OCT-4 staining gradually disappeared from the epiblast, mesoderm, and endoderm except from scattered cells, presumably primordial germ cells, localized in the endoderm. Our results suggest that also in the porcine embryo SOX-2 plays a dual role, being involved in regulation of both pluripotency and neural development.


2006 ◽  
Vol 2006 (1) ◽  
pp. pdb.prot4366
Author(s):  
Andras Nagy ◽  
Marina Gertsenstein ◽  
Kristina Vintersten ◽  
Richard Behringer
Keyword(s):  

2006 ◽  
Vol 18 (2) ◽  
pp. 181 ◽  
Author(s):  
M. Vejlsted ◽  
H. Offenberg ◽  
P. Maddox-Hyttel

In embryonic stem cell research, Oct-4 is one of the most widely used markers of pluripotency. Moreover, at least in the mouse, this marker is restricted to primordial germ cells (PGCs) after gastrulation. Vimentin is often used as a marker of mesoderm/mesenchyme in embryonic tissues and appears to localize to the same embryonic cells as Oct-4, at least in the bovine epiblast. The expression of neither of these markers has been completely addressed in the pig. Therefore, the purpose of the present study was to examine the expression of Oct-4 and vimentin in the porcine epiblast during differentiation and establishment of the three germ layers, i.e. the process of gastrulation. A total of 410 porcine embryos were collected at 8 to 17 days post-insemination from 29 sows of the Danish Landrace breed. Embryos were categorized based on stereo-microscopic observations into the following stages: pre-streak stages 1 and 2, primitive streak stage, neural groove stage, and somite stage. Specimens were fixed at all stages, dehydrated and embedded in paraffin wax. Selected embryos at each stage (n = 28) were completely cut into serial sections for immunohistochemical evaluation of Oct-4 and vimentin. Pre-streak stage 1 embryos were defined by lack of polarization of the embryonic disk, whereas in pre-streak stage 2 embryos a crescent shaped thickening was seen at the posterior pole of the disk. This thickening, marking the first morphological anterior-posterior polarization of the embryo proper, was shown to be a site of incipient ingression of cells from the epiblast. Immunohistochemical analyses localized Oct-4 to nuclei and vimentin to cytoplasm of both founding and ingressing epiblast cells. During formation of mesoderm and endoderm, at the primitive streak stage, solitary Oct-4 positive cells, i.e. potential PGCs, were seen scattered in the endoderm. Cells of the epiblast displayed positive labeling for Oct-4 until specification for the ectoderm cell lineage at the subsequent neural groove stage. In mesoderm, Oct-4 likewise disappeared by the time of formation of the first somites, defining the following somite stage. Thus, at this stage the only cells labeled for Oct-4, i.e. potential PGCs, were seen solitarily scattered in the endoderm. By the 15-somite stage, such cells were no longer visible in the endoderm but were seen located in the mesoderm, spreading from the stalk of the yolk sac and allantois and extending through the mid- and hindgut areas into the incipient genital ridge. Vimentin localized to the mesenchyme and most other derivatives of neural crest and mesodermal origin. In conclusion, based on Oct-4 labeling and distribution pattern, we strongly believe that we have identified the porcine PGCs from the primitive streak stage.


2005 ◽  
Vol 7 (4) ◽  
pp. 255-264 ◽  
Author(s):  
Ekaterina Bubenshchikova ◽  
Bensheng Ju ◽  
Inna Pristyazhnyuk ◽  
Katsutoshi Niwa ◽  
Elena Kaftanovskaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document