The role of an endogenous PKA inhibitor, PKIα, in organizing left-right axis formation

Development ◽  
2001 ◽  
Vol 128 (13) ◽  
pp. 2509-2515
Author(s):  
Minoru Kawakami ◽  
Nobuki Nakanishi

Protein kinase inhibitor (PKI) is an endogenous inhibitor of cAMP-dependent protein kinase A (PKA). We have found that the α-isoform of PKI (PKIα) is asymmetrically expressed along the left-right (L-R) axis in chick embryos. At stage 6, PKIα is expressed on the right side of the node, and this asymmetric expression continues until stage 7+. After stage 8, PKIα expression returns symmetric. Treatment of embryos with antisense PKIα oligonucleotides increased the incidence of reversed heart looping. Antisense oligonucleotides also induced ectopic expression of the left-specific genes Nodal and Pitx2, and suppressed the expression of the right-specific gene SnR in the right lateral plate mesoderm. Similarly, treatment with PKA activators forskolin and Sp-cAMPs resulted in both reversed heart looping and bilateral expression of Nodal. Ectopic activin induced PKIα on the left side of the node, while ectopic Shh and anti-Shh antibody had no effect on PKIα expression. Taken together, these data suggest that PKIα induced by an activin-like molecule, through the inhibition of PKA activity, suppresses the Nodal-Pitx2 pathway on the right side of the body.

1989 ◽  
Vol 94 (4) ◽  
pp. 693-717 ◽  
Author(s):  
B Ribalet ◽  
S Ciani ◽  
G T Eddlestone

The single-channel recording technique was employed to investigate the mechanism conferring ATP sensitivity to a metabolite-sensitive K channel in insulin-secreting cells. ATP stimulated channel activity in the 0-10 microM range, but depressed it at higher concentrations. In inside-out patches, addition of the cAMP-dependent protein kinase inhibitor (PKI) reduced channel activity, suggesting that the stimulatory effect of ATP occurs via cAMP-dependent protein kinase-mediated phosphorylation. Raising ATP between 10 and 500 microM in the presence of exogenous PKI progressively reduced the channel activity; it is proposed that this inactivation results from a reduction in kinase activity owing to an ATP-dependent binding of PKI or a protein with similar inhibitory properties to the kinase. A model describing the effects of ATP was developed, incorporating these two separate roles for the nucleotide. Assuming that the efficacy of ATP in controlling the channel activity depends upon the relative concentrations of inhibitor and catalytic subunit associated with the membrane, our model predicts that the channel sensitivity to ATP will vary when the ratio of these two modulators is altered. Based upon this, it is shown that the apparent discrepancy existing between the sensitivity of the channel to low ATP concentrations in the excised patch and the elevated intracellular level of ATP may be explained by postulating a change in the inhibitor/kinase ratio from 1:1 to 3:2 owing to the loss of protein kinase after patch excision. At a low concentration of ATP (10-20 microM), a nonhydrolyzable ATP analogue, AMP-PNP, enhanced the channel activity when present below 10 microM, whereas the analogue blocked the channel activity at higher concentrations. It is postulated that AMP-PNP inhibits the formation of the kinase-inhibitor complex in the former case, and prevents phosphate transfer in the latter. A similar mechanism would explain the interaction between ATP and ADP which is characterized by enhanced activity at low ADP concentrations and blocking at higher concentrations.


2000 ◽  
Vol 349 (2) ◽  
pp. 403-407 ◽  
Author(s):  
Lihua ZHENG ◽  
Long YU ◽  
Qiang TU ◽  
Min ZHANG ◽  
Hua HE ◽  
...  

Two novel members of the human cAMP-dependent protein kinase inhibitor (PKI) gene family, PKIB and PKIG, were cloned. The deduced proteins showed 70% and 90% identity with mouse PKIβ and PKIγ respectively. Both the already identified pseudosubstrate site and leucine-rich nuclear export signal motifs were defined from the 11 PKIs of different species. The PKIB and PKIG genes were mapped respectively to chromosome 6q21-22.1, using a radiation hybrid GB4 panel, and to chromosome 20q13.12-13.13, using a Stanford G3 panel. Northern-blot analysis of three PKI isoforms, including the PKIA identified previously, revealed significant differences in their expression patterns. PKIB had two transcripts of 1.9 kb and 1.4 kb. The former transcript was abundant in both placenta and brain and the latter was expressed most abundantly in placenta, highly in brain, heart, liver, pancreas, moderately in kidney, skeletal muscle and colon, and very little in the other eight tissues tested. PKIG was widely expressed as a 1.5-kb transcript with the highest level in heart, hardly detectable in thymus and peripheral blood leucocytes and was moderately expressed in the other tissues, with slightly different levels. However, PKIA was specifically expressed as two transcripts of 3.3 kb and 1.5 kb in heart and skeletal muscle. The distinct expression patterns of the three PKIs suggest that their roles in various tissues are probably different.


1996 ◽  
Vol 318 (2) ◽  
pp. 569-573 ◽  
Author(s):  
Paola D'ANDREA ◽  
Valentina PASCHINI ◽  
Franco VITTUR

The ability of cAMP to modulate the actions of Ca2+-mobilizing agonists was studied in single Fura-2-loaded pig articular chondrocytes in primary culture. Forskolin and 8-Br-cAMP increased both the frequency and amplitude of Ca2+ oscillations induced by ATP, and, in unstimulated cells, induced single Ca2+ transients or even Ca2+ oscillations. The cAMP-dependent protein kinase inhibitor H89 totally prevented the effect of cAMP-elevating agents on Ca2+ signalling. Forskolin and 8-Br-cAMP promptly increased the rate of Mn2+ quenching, when administered in the presence of ATP, suggesting a potentiation of receptor-mediated Ca2+ influx. In Ca2+-free medium, ATP-induced Ca2+ oscillations decreased and stopped after a few cycles: subsequent ATP additions temporarily resumed the activity, an effect that could be mimicked by forskolin. The same agent induced single Ca2+ transients in 42% of the cell population maintained in Ca2+-free medium. Thapsigargin prevented Ca2+ responses to both ATP and forskolin. The results indicate a dual mechanism for cAMP-induced potentiation of Ca2+ signalling in articular chondrocytes: an increase of receptor-mediated Ca2+ influx and a positive modulation of intracellular Ca2+ release.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485 ◽  
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


2009 ◽  
Vol 9 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Helen M. Taylor ◽  
Louisa McRobert ◽  
Munira Grainger ◽  
Audrey Sicard ◽  
Anton R. Dluzewski ◽  
...  

ABSTRACT A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the malaria parasite was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the parasite life cycle, the stage that causes malaria pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage parasites allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for ≥6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum parasites expressing a compound 1-insensitive PfPKG. The mutant parasites were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against malaria.


Development ◽  
1999 ◽  
Vol 126 (23) ◽  
pp. 5195-5205 ◽  
Author(s):  
A.F. Ramsdell ◽  
H.J. Yost

The rightward looping of the primary heart tube is dependent upon upstream patterning events that establish the vertebrate left-right axis. In Xenopus, a left-sided Vg1 signaling pathway has been implicated in instructing cells to adopt a ‘left-sided identity’; however, it is not known whether ‘right-sided identity’ is acquired by a default pathway or by antagonism of Vg1 signaling. Here, we propose that an antagonistic, BMP/ALK2/Smad-mediated signaling pathway is active on the right side of the Xenopus embryo. Truncated ALK2 receptor expression on the right side of the blastula elicits heart reversals and altered nodal expression. Consistent with these findings, constitutively active ALK2 (CA-ALK2) receptor expression on the left side of the blastula also elicits heart reversals and altered nodal expression. Coexpression of CA-ALK2 with mature Vg1 ligand results in predominantly left-sided nodal expression patterns and normal heart looping, demonstrating that the ALK2 pathway can ‘rescue’ left-right reversals that otherwise occur following right-sided misexpression of mature Vg1 ligand alone. Results with chimeric precursor proteins indicate that the mature domain of BMP ligands can mimic the ability of the ALK2 signaling pathway to antagonize the Vg1 pathway. Consistent with the observed antagonism between BMP and Vg1 ligands, left-sided ectopic expression of Xolloid results in heart reversals. Moreover, ectopic expression of Smad1 or Smad7 identified two downstream modulators of the BMP/ALK2 signaling pathway that also can regulate cardiac orientation. Collectively, these results define a BMP/ALK2-mediated pathway on the right side of the Xenopus embryo and, moreover, suggest that left-right patterning preceding cardiac morphogenesis involves the activation of two distinct and antagonistic, left- and right-sided TGF(beta)-related signaling pathways.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


Sign in / Sign up

Export Citation Format

Share Document