Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Paul A. Trainor ◽  
Dorothy Sobieszczuk ◽  
David Wilkinson ◽  
Robb Krumlauf

Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in pattering the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Development ◽  
2000 ◽  
Vol 127 (6) ◽  
pp. 1161-1172 ◽  
Author(s):  
P.M. Kulesa ◽  
S.E. Fraser

Hindbrain neural crest cells were labeled with DiI and followed in ovo using a new approach for long-term time-lapse confocal microscopy. In ovo imaging allowed us to visualize neural crest cell migration 2–3 times longer than in whole embryo explant cultures, providing a more complete picture of the dynamics of cell migration from emergence at the dorsal midline to entry into the branchial arches. There were aspects of the in ovo neural crest cell migration patterning which were new and different. Surprisingly, there was contact between neural crest cell migration streams bound for different branchial arches. This cell-cell contact occurred in the region lateral to the otic vesicle, where neural crest cells within the distinct streams diverted from their migration pathways into the branchial arches and instead migrated around the otic vesicle to establish a contact between streams. Some individual neural crest cells did appear to cross between the streams, but there was no widespread mixing. Analysis of individual cell trajectories showed that neural crest cells emerge from all rhombomeres (r) and sort into distinct exiting streams adjacent to the even-numbered rhombomeres. Neural crest cell migration behaviors resembled the wide diversity seen in whole embryo chick explants, including chain-like cell arrangements; however, average in ovo cell speeds are as much as 70% faster. To test to what extent neural crest cells from adjoining rhombomeres mix along migration routes and within the branchial arches, separate groups of premigratory neural crest cells were labeled with DiI or DiD. Results showed that r6 and r7 neural crest cells migrated to the same spatial location within the fourth branchial arch. The diversity of migration behaviors suggests that no single mechanism guides in ovo hindbrain neural crest cell migration into the branchial arches. The cell-cell contact between migration streams and the co-localization of neural crest cells from adjoining rhombomeres within a single branchial arch support the notion that the pattern of hindbrain neural crest cell migration emerges dynamically with cell-cell communication playing an important guidance role.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2303-2312 ◽  
Author(s):  
R.M. Landolt ◽  
L. Vaughan ◽  
K.H. Winterhalter ◽  
D.R. Zimmermann

Chondroitin sulfate proteoglycans have been implicated in the regulation of cell migration and pattern formation in the developing peripheral nervous system. To identify whether the large aggregating proteoglycan versican might be mediating these processes, we prepared monospecific antibodies against a recombinant core protein fragment of chick versican. The purified antibodies recognize the predominant versican splice-variants V0 and V1. Using these antibodies, we revealed a close correlation between the spacio-temporal expression of versican and the formation of molecular boundaries flanking or transiently blocking the migration pathways of neural crest cells or motor and sensory axons. Versican is present in the caudal sclerotome, the early dorsolateral tissue underneath the ectoderm, the pelvic girdle precursor and to a certain extent in the perinotochordal mesenchyme. Versican is completely absent from tissues invaded by neural crest cells and extending axons. Upon completion of neural crest cell migration and axon outgrowth, versican expression is shifted to pre-chondrogenic areas. Since versican inhibits cellular interactions with fibronectin, laminin and collagen I in vitro, the selective expression of versican within barrier tissues may be linked to a functional role of versican in the guidance of migratory neural crest cells and outgrowing axons.


Development ◽  
1986 ◽  
Vol 98 (1) ◽  
pp. 21-58
Author(s):  
S. S. Tan ◽  
G. M. Morriss-Kay

Rat embryos were grown in vitro during the period of cranial neural crest cell migration. In order to study the pathways and positional fates of cells from different regions of the neural crest, labelled premigratory crest cells from donor embryos were microinjected orthotopically into host embryos of the same developmental stage except for area 1 (forebrain) grafts which were, for technical reasons, injected into area 2. After various periods of time in whole embryo culture, the embryos were examined by immunohistochemical staining in order to determine the new positions of the labelled cells, and a map of their migration pathways was constructed. The observed patterns of migration were consistent with predictions from morphological studies in mammals and with extrapolations from transplantation studies in birds. However, crest cell migratory behaviour in rat and chick embryos was not identical; possible reasons for this are discussed.


Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 297-307 ◽  
Author(s):  
G.N. Serbedzija ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

The spatial and temporal aspects of cranial neural crest cell migration in the mouse are poorly understood because of technical limitations. No reliable cell markers are available and vital staining of embryos in culture has had limited success because they develop normally for only 24 hours. Here, we circumvent these problems by combining vital dye labelling with exo utero embryological techniques. To define better the nature of cranial neural crest cell migration in the mouse embryo, premigratory cranial neural crest cells were labelled by injecting DiI into the amniotic cavity on embryonic day 8. Embryos, allowed to develop an additional 1 to 5 days exo utero in the mother before analysis, showed distinct and characteristic patterns of cranial neural crest cell migration at the different axial levels. Neural crest cells arising at the level of the forebrain migrated ventrally in a contiguous stream through the mesenchyme between the eye and the diencephalon. In the region of the midbrain, the cells migrated ventrolaterally as dispersed cells through the mesenchyme bordered by the lateral surface of the mesencephalon and the ectoderm. At the level of the hindbrain, neural crest cells migrated ventrolaterally in three subectodermal streams that were segmentally distributed. Each stream extended from the dorsal portion of the neural tube into the distal portion of the adjacent branchial arch. The order in which cranial neural crest cells populate their derivatives was determined by labelling embryos at different stages of development. Cranial neural crest cells populated their derivatives in a ventral-to-dorsal order, similar to the pattern observed at trunk levels. In order to confirm and extend the findings obtained with exo utero embryos, DiI (1,1-dioctadecyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate) was applied focally to the neural folds of embryos, which were then cultured for 24 hours. Because the culture technique permitted increased control of the timing and location of the DiI injection, it was possible to determine the duration of cranial neural crest cell emigration from the neural tube. Cranial neural crest cell emigration from the neural folds was completed by the 11-somite stage in the region of the rostral hindbrain, the 14-somite stage in the regions of the midbrain and caudal hindbrain and not until the 16-somite stage in the region of the forebrain. At each level, the time between the earliest and latest neural crest cells to emigrate from the neural tube appeared to be 9 hours.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 110 (21) ◽  
pp. 2729-2744 ◽  
Author(s):  
N. Desban ◽  
J.L. Duband

In the present study, to further elucidate the molecular events that control neural crest cell migration, we have analyzed in vitro the adhesive and locomotory response of avian trunk neural crest cells to laminin-1 and searched for the integrin receptors involved in this process. Adhesion of crest cells on laminin-1 was comparable to that found on fibronectin or vitronectin. By contrast, migration was significantly greater on laminin-1 than on the other substrate molecules. Interaction of crest cells with laminin-1 involved two major cell-binding domains situated in different portions of the molecule, namely the E1′ and E8 fragments, which elicited different cellular responses. Cells were poorly spread on the E1′ fragment whereas, on E8, they were extremely flattened and cohesive. Either fragment supported cell locomotion, albeit not as efficiently as laminin-1. Immunoprecipitation and immunocytochemistry analyses revealed that crest cells expressed the alpha1beta1, alpha3beta1, alpha6beta1 and alpha vbeta3 integrins, as well as beta8 integrins, as presumptive laminin-1 receptors, but not alpha6beta4 and alpha2beta1. Immunofluorescence labeling of cultured cells showed that the alpha1, alpha v, beta1 and beta3 subunits were diffuse on the cell surface and in focal contacts. In contrast, alpha3 and beta8 were diffuse, while alpha6 was mostly intracytoplasmic and, secondarily, in focal contacts. Inhibition assays of cell adhesion and migration with function-perturbing antibodies demonstrated that alpha1beta1 played a predominant role in both adhesion and migration on laminin-1 and interacted with either binding sites in the E1′ and E8 fragments. Alpha vbeta3 was also implicated in neural crest cell migration. In contrast, alpha3beta1, alpha6beta1 and the beta8 integrins appeared to play only subsidiary roles in cell adhesion and migration. Finally, the ability of neural crest cells to interact with laminin-1 was found to increase with time in culture, possibly in correlation with changes in alpha3 distribution on the cell surface. In conclusion, our study indicates that (1) the preferential migration of neural crest cells along basal laminae can be accounted for by the ability of laminin-1 to promote migration with great efficiency; (2) interaction with laminin-1 involves two major cell binding domains that are both recognized by the alpha1beta1 integrin; (3) alpha1beta1 integrin can elicit different cellular responses depending on the laminin-1 domains with which it interacts; and (4) changes in the repertoire of integrins expressed by neural crest cells are consistent with the modulations of cell-substratum adhesion occurring throughout migration.


Development ◽  
1991 ◽  
Vol 113 (Supplement_2) ◽  
pp. 9-15 ◽  
Author(s):  
Andrew Lumsden ◽  
Sarah Guthrie

The developing chick hindbrain is transiently divided into a series of repeating units or rhombomeres. Recent work has shown that an alternating periodicity exists both in the cell surface properties of rhombomeres and in the segmental origin of hindbrain neural crest cells. Experiments in which rhombomeres from different axial levels were confronted in the absence of an interrhombomere boundary showed that odd-numbered segments 3 and 5 combined without generating a boundary, as did even-numbered segments 2, 4 and 6. When rhombomeres originating from adjacent positions, or three rhombomeres distant from one another were combined, a new boundary was regenerated. Mapping of the migration pathways of neural crest cells showed that odd-numbered and even-numbered rhombomeres share properties with respect to the production of neural crest cells. In the hindbrain region the neural crest is segregated into streams. Neural crest cells migrating from rhombomeres 1 and 2, rhombomere 4 and rhombomere 6 respectively populate distinct cranial nerve ganglia and branchial arches. In contrast, rhombomeres 3 and 5 are free of neural crest cells.


2011 ◽  
Vol 356 (1) ◽  
pp. 197
Author(s):  
Dennis A. Ridenour ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Katherine W. Prather ◽  
Craig L. Semerad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document