scholarly journals Mitf-family transcription factor function is required within cranial neural crest cells to promote choroid fissure closure

Development ◽  
2020 ◽  
Vol 147 (21) ◽  
pp. dev187047 ◽  
Author(s):  
Katie L. Sinagoga ◽  
Alessandra M. Larimer-Picciani ◽  
Stephanie M. George ◽  
Samantha A. Spencer ◽  
James A. Lister ◽  
...  
2019 ◽  
Author(s):  
Katie L. Sinagoga ◽  
Alessandra M. Larimer-Picciani ◽  
Stephanie M. George ◽  
Samantha A. Spencer ◽  
James A. Lister ◽  
...  

AbstractA critical step in eye development is closure of the choroid fissure (CF), a transient structure in the ventral optic cup through which vasculature enters the eye and ganglion cell axons exit. While many factors have been identified that function during CF closure, the molecular and cellular mechanisms mediating this process remain poorly understood. Failure of CF closure results in colobomas. Recently, MITF was shown to be mutated in a subset of human coloboma patients, but how MITF functions during CF closure is unknown. To address this question, zebrafish with mutations in mitfa and tfec, two members of the Mitf-family of transcription factors, were analyzed and their functions during CF closure determined. mitfa;tfec mutants possess severe colobomas and our data demonstrate that Mitf activity is required within cranial neural crest cells (cNCCs) to facilitate CF closure. In the absence of Mitf function, cNCC migration and localization in the optic cup are perturbed. These data shed light on the cellular mechanisms underlying colobomas in patients with MITF mutations and identify a novel role for Mitf function in cNCCs during CF closure.Summary StatementMitf-family transcription factors act within cranial neural crest cells to promote choroid fissure closure. Without Mitf-family function, cNCC localization and function in the CF is disrupted, thus contributing to colobomas.


Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2751-2761 ◽  
Author(s):  
H. Epperlein ◽  
D. Meulemans ◽  
M. Bronner-Fraser ◽  
H. Steinbeisser ◽  
M.A. Selleck

We have examined the ability of normal and heterotopically transplanted neural crest cells to migrate along cranial neural crest pathways in the axolotl using focal DiI injections and in situ hybridization with the neural crest marker, AP-2. DiI labeling demonstrates that cranial neural crest cells migrate as distinct streams along prescribed pathways to populate the maxillary and mandibular processes of the first branchial arch, the hyoid arch and gill arches 1–4, following migratory pathways similar to those observed in other vertebrates. Another neural crest marker, the transcription factor AP-2, is expressed by premigratory neural crest cells within the neural folds and migrating neural crest cells en route to and within the branchial arches. Rotations of the cranial neural folds suggest that premigratory neural crest cells are not committed to a specific branchial arch fate, but can compensate when displaced short distances from their targets by migrating to a new target arch. In contrast, when cells are displaced far from their original location, they appear unable to respond appropriately to their new milieu such that they fail to migrate or appear to migrate randomly. When trunk neural folds are grafted heterotopically into the head, trunk neural crest cells migrate in a highly disorganized fashion and fail to follow normal cranial neural crest pathways. Importantly, we find incorporation of some trunk cells into branchial arch cartilage despite the random nature of their migration. This is the first demonstration that trunk neural crest cells can form cartilage when transplanted to the head. Our results indicate that, although cranial and trunk neural crest cells have inherent differences in ability to recognize migratory pathways, trunk neural crest can differentiate into cranial cartilage when given proper instructive cues.


genesis ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Vasker Bhattacherjee ◽  
Partha Mukhopadhyay ◽  
Saurabh Singh ◽  
Emily A. Roberts ◽  
Rita C. Hackmiller ◽  
...  

2010 ◽  
Vol 155 (2) ◽  
pp. 270-279 ◽  
Author(s):  
Dwight R. Cordero ◽  
Samantha Brugmann ◽  
Yvonne Chu ◽  
Ruchi Bajpai ◽  
Maryam Jame ◽  
...  

2009 ◽  
Vol 335 (1) ◽  
pp. 132-142 ◽  
Author(s):  
Shuyi Nie ◽  
Yun Kee ◽  
Marianne Bronner-Fraser

2019 ◽  
Vol 86 ◽  
pp. 76-85 ◽  
Author(s):  
Partha Mukhopadhyay ◽  
Ratnam S. Seelan ◽  
Robert M. Greene ◽  
M. Michele Pisano

Sign in / Sign up

Export Citation Format

Share Document