On the ‘clock’ mechanism determining the time of tissue-specific enzyme development during ascidian embryogenesis

Development ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 131-139
Author(s):  
Noriyuki Satoh

During ascidian embryogenesis a tissue-specific enzyme, muscle acetylcholinesterase (AChE) may first be detected histochemically in the presumptive muscle cells of the neurula. [n order to investigate the ‘clock’ or counting mechanism that is determining the time when AChE first appears, Whittaker's experiment (1973) has been repeated using eggs of theascidian, Halocynthia roretzi. Embryos that had been permanently cleavage-arrested with cytochalasin B were able to differentiate AChE in their muscle lineage blastomeres. The time of first AChE occurrence in embryos that had been cleavage-arrested in the 32-cell stage with cytochalasin B was about the same as in normal embryos. This result indicates that the clock is not apparently regulated by the events of cytokinesis. The early gastrulae which had been arrested with colchicine or with colcemid could develop AChE activity, although no histochemically detectable AChE activity was observed in the cleavage-stage embryos that had been arrested with either drug. Therefore the clock does not seem to be controlled by the mitotic cycle of the nucleus. It is suggested that the cycle of DNA replication may be related to the regulation of the clock that is determining the time of development of histospecific protein.

Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 61-71
Author(s):  
Noriyuki Satoh ◽  
Susumu Ikegami

Acetylcholinesterase (AChE) is a tissue-specific enzyme of the muscle cells of ascidian embryos and its synthesis begins at the neurula stage. Embryos which had been permanently cleavage-arrested with cytochalasin B could develop AChE activity. The time of first AChE occurrence in embryos which had been arrested in the 32-cell stage with cytochalasin was about the same as in normal embryos. The nucleus in the cell of cytochalasin-arrested embryos divided in good synchrony with that of normal embryos. Embryos which had been continuously arrested with colchicine could also produce AChE activity at nearly the same time as did normal embryos. In the cell of colchicine-arrested embryos normal nuclear divisions did not occur, but the cell showed repeated cycles of nuclear envelope breakdown and nuclear envelope reformation in almost parallel with cell cycles of normal embryos. The cell of colchicine-arrested embryos incorporated [3H]thymidine. Aphidicolin, a specific inhibitor of DNA synthesis, prevented cleavages of ascidian eggs. Embryos which had been permanently arrested with aphidicolin in the cleavage stages up to the 64-cell stage did not develop AChE activity, while embryos which had been treated with it from the 76-cell stage onwards were found to be able to differentiate AChE activity. Based on these findings it was proposed that DNA replication is prerequisite for development of the histospecific protein and that the cycle of DNA replication is closely associated with the clock mechanism which is determining the time of initiation of the enzyme development.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 1-13
Author(s):  
Noriyuki Satoh ◽  
Susumu Ikegami

In order to determine whether or not a crucial number of DNA replications are prerequisite for cellular differentiation, we have studied development of a tissue-specific enzyme, muscle acetylcholinesterase (AChE) in the presumptive muscle cells of cleavage-arrested ascidian embryos. Embryos were cleavage-arrested with cytochalasin B (an inhibitor of cytokinesis) and aphidicolin (an inhibitor of DNA synthesis). The 64-ceIl-stage embryos which had been permanently cleavage-arrested with cytochalasin B developed AChE in all the eight presumptive muscle cells, but the same stage embryos which had been prevented from undergoing further divisions by simultaneous treatment with aphidicolin and cytochalasin did not produce AChE at all. Cytochalasin-arrested 76-cell-stage embryos were able to differentiate AChE in the ten presumptive muscle cells, while aphidicolin-cytochalasin-arrested 76-cell stages in as many as four cells. The early gastrulae which had been arrested with cytochalasin B produced AChE in all the sixteen presumptive muscle cells, while the same stage embryos arrested with aphidicolin and cylochalasin in as many as twelve cells. Cytochalasin-arrested late gastrulae developed AChE in twenty blastomeres, while aphidicolin-cytochalasinarrested late gastrulae in eighteen cells. The presumptive muscle cells at these four stages consist of those of three different (seventh, eighth, and ninth) generations, and the relative positions of the blastomeres in the cleavagearrested embryos remained fixed. Judging from the relative positions of the blaslomeres, the AChE-producing cells in aphidicolin-cytochalasin-arrested embryos were always at eighth or ninth generation, while those with no AChE activity were certainly at seventh generation. Based on these findings it was supposed that aphidicolin-sensitive cell-cyclic events, presumably DNA replication, are closely associated with AChE development and that the eighth cleavage cycle may be ‘quantal’ for the histospecific enzyme development.


Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 1-12
Author(s):  
Izumi Mita-Miyazawa ◽  
Susumu Ikegami ◽  
Noriyuki Satoh

The presumptive muscle cells (B5.1 blastomeres) were isolated from 16-cell-stage embryos of the ascidian, Ciona intestinalis. The isolated cells were allowed to divide either twice or three times thereafter. Then further divisions of the cells were continuously inhibited by a simultaneous treatment with aphidicolin (a specific inhibitor of DNA synthesis) and cytochalasin B (an inhibitor of cytokinesis). When development of muscle-specific acetyl-cholinesterase in these division-arrested progeny cells of B5.1 blastomeres was examined histochemically, the B5.1 blastomeres which had been allowed two further divisions did not produce any detectable acetyl-cholinesterase activity. Whereas those which had been allowed three further divisions showed the tissue-specific enzyme activity. These results provide further evidence for the presence of a quantal DNA replication cycle for the tissue-specific enzyme development, which is qualitatively different from the other DNA replication cycles.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 343-354
Author(s):  
J. R. Whittaker

This research shows that myoplasmic crescent material of the ascidian egg has both functional autonomy and functional specificity in establishing the differentiation pathway of muscle lineage cells. The cytoplasmic segregation pattern in eggs of Styela plicata was altered by compression of the embryos during third cleavage. This caused a meridional division instead of the normal equatorial third cleavage; first and second cleavages are meridional. Since eggs of S. plicata have a pronounced yellow myoplasmic crescent, one observes directly that third cleavage under compression resulted in a flat 8-cell stage with four cells containing yellow myoplasm instead of the two myoplasm-containing cells that would be formed by normal equatorial division at third cleavage. If such altered 8-cell-stage embryos were released from compression and kept from undergoing further divisions by continuous treatment with cytochalasin B, some embryos eventually developed histospecific acetylcholinesterase in three and four cells instead of in just the two muscle lineage cells found in cleavage-arrested normal 8-cell stages. The wider myoplasmic distribution effected by altering the division plane at third cleavage apparently caused a change in developmental fate of the extra cells receiving myoplasm. This meridional third cleavage also resulted in a changed nuclear lineage pattern. Two nuclei that would ordinarily be in ectodermal lineage cells after third cleavage were now associated with yellow myoplasm. Acetylcholinesterase development in these cells demonstrates that nuclear lineages are not responsible for muscle acetylcholinesterase development in the ascidian embryo.


1971 ◽  
Vol 26 (8) ◽  
pp. 816-821 ◽  
Author(s):  
Larry E. Bockstahler

Incorporation of uridine in cleavage stage eggs of the sea urchin Paracentrotus lividus was investigated. It was shown by ion exchange and thin layer chromatography that most of the uridine taken up during the 16-cell stage was converted into UTP with some incorporation into UDP and UMP. Conversion of uridine to these phosphorylated nucleosides occurred throughout early cleavage stages. A very small amount of uridine taken up by cleavage stage eggs is incorporated into RNA heterogeneous in size. This RNA was examined by polyacrylamide gel electrophoresis.


Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1121-1132
Author(s):  
M.H. Kaufman ◽  
S. Webb

Despite the fact that a variety of experimental techniques have been devised over the years to induce tetraploid mammalian embryonic development, success rates to date have been limited. Apart from the early study by Snow, who obtained development to term of a limited number of cytochalasin B-induced tetraploid mouse embryos, no other researchers have achieved development of tetraploid embryos beyond the early postimplantation period. We now report advanced postimplantation development of tetraploid mouse embryos following electrofusion of blastomeres at the 2-cell stage, and subsequent transfer of these 1-cell ‘fused’ embryos to appropriate recipients. Cytogenetic analysis of the extraembryonic membranes of all of the postimplantation embryos encountered in the present study has provided an unequivocal means of confirming their tetraploid chromosome constitution. A preliminary morphological and histological analysis of the tetraploid embryos obtained by this technique has revealed that characteristic craniofacial abnormalities particularly involving the forebrain and eyes were consistently observed, and these features were often associated with abnormalities of the vertebral axis and heart. The most advanced viable embryo in this series was recovered on the 15th day of gestation, and its morphological features suggest that it was developmentally equivalent to a normal embryo of about 13.5-14 days p.c.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S42-S43 ◽  
Author(s):  
Tetsuya Kominami

Sea urchin pluteus larvae contain dozens of pigment cells in their ectoderm. These pigment cells are the descendants of the veg2 blastomeres of the 60-cell stage embryo. According to the fate map made by Ruffins and Ettensohn, the prospective pigment cells occupy the central region of the vegetal plate. Most of these prospective pigment cells exclusively give rise to pigment cells. Therefore, specification of the pigment cell lineage should occur at some point between the 60-cell and mesenchyme blastula stage. However, the detailed process of the specification of the pigment lineage is unknown.When are pigment cells specified? Are cell interactions necessary for the specification? Do founder cells exist? To answer these questions, I treated embryos with Ca2+-free seawater during the cleavage stage and examined the number of pigment cells observed in pluteus larvae. Treatment at 5.5–8.5 h and especially 7.5–10.5 h postfertilisation markedly reduced the number of pigment cells. The decrease was statistically significant. On the other hand, the treatment at 3.5–6.5 h or 9.5–12.5 h never reduced the number of pigment cells. By examining the frequency of the appearance of embryos whose numbers of pigment cells were less than 20, it was also found that the numbers of pigment cells were frequently in multiples of 4. Embryos having 4, 8, 12, 16 and 20 pigment cells were more frequently observed. Statistics indicated that the frequency of appearance was not random. These results indicated that cell contacts are necessary for the specification of pigment cells and that the specification occurs from 7 to 10 h postfertilisation. The results also suggest that the founder cells, if they exist, divide twice before they differentiate into pigment cells.


2008 ◽  
Vol 20 (1) ◽  
pp. 168
Author(s):  
L. Magnani ◽  
R. Cabot

Parthenogenetic embryos obtained by electroactivation of mature oocytes have been used as models in developmental studies. The correct gene expression in early cleavage embryos is essential to sustain embryo development. The precise regulation of genes involved in pluripotency (Oct-4, Sox-2, and Nanog) is crucial to the formation of inner cell mass and trophoblast cells. Failure to do so can contribute to impaired development. We hypothesized that porcine embryos produced by fertilization in vitro and parthenogensis would possess a similar pattern of expression of Oct-4, Nanog, and Sox-2 during cleavage development. The objective of this study was to determine the developmental expression pattern of these three transcription factors in porcine oocytes and cleavage-stage embryos produced by either fertilization or parthenogenesis. Messenger RNAwas isolated from pools of 40-150 germinal vesicle (GV)- and MII-arrested oocytes and pools of 2-cell (2c), 4-cell (4c), 8-cell (8c), and blastocyst-stage embryos produced by in vitro fertilization (IVF) or electroactivation. Quantitative real-time PCR was performed following cDNA synthesis. Transcripts for Oct-4, Nanog, Sox-2, andYWHAG (housekeeping gene control) were amplified in duplicate across three to five experimental replicates. Transcripts were quantified using the comparative CT method using YWHAG as internal control and GV stage as normalizing stage. Fold activation and repression were analyzed with ANOVA and Tukey's post-hoc test. Our results show that porcine embryos produced by either IVF or electroactivation possess a similar pattern of pluripotent gene expression during cleavage-stage development. Oct-4 was found to be present in high abundance in the 2-cell parthenogenetic embryos and then repressed at the 8-cell stage (10-fold; P < 0.05, 2c v. 8c). In IVF embryos, Oct-4 was found in significantly higher amount at the 2-cell stage (35-fold; P < 0.05, 2c v. GV). Nanog transcripts were present at low levels from the GV oocyte until the 4-cell stage in both IVF and parthenogenetic embryos and then upregulated 10 000-fold at the 4-cell stage (P < 0.0001, GV v. 4c); at the blastocyst stage, Nanog transcript levels were similar to the levels found in the GV stage oocytes. Sox-2 transcripts were lower in MII oocytes and were significantly upregulated in 8-cell-stage embryos produced by either IVF or electroactivation (9- and 20-fold; P < 0.01, P < 0.0001, MII v. 8c, respectively). In addition, Sox-2 transcripts were significantly higher in parthenogenetic blastocysts compared to IVF-derived blastocysts (P < 0.05). This work demonstrates that cleavage-stage porcine embryos, produced by either electroactivation or IVF, undergo a similar pattern of activation of key regulatory genes; however, the activation method can have an influence on the transcript abundance of specific genes at defined stages.


Sign in / Sign up

Export Citation Format

Share Document