founder cells
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lukas Eigentler ◽  
Margarita Kalamara ◽  
Graeme Ball ◽  
Cait E MacPhee ◽  
Nicola R Stanley-Wall ◽  
...  

Bacteria typically form dense communities called biofilms, where cells are embedded in a self-produced extracellular matrix. Competitive interactions between strains within the biofilm context are studied due to their potential applications in biological, medical, and industrial systems. Combining mathematical modelling with experimental assays, we reveal that the spatial structure and the competitive dynamics within biofilms are significantly affected by the location and density of founder cells. Using an isogenic pair of Bacillus subtilis strains, we show that the observed spatial structure and relative strain biomass in a mature biofilm can be mapped directly to the locations of founder cells. Moreover, we define a predictor of competitive outcome that accurately forecasts relative abundance of strains based solely on the founder cells' access to free space. Consequently, we reveal that variability of competitive outcome in biofilms inoculated at low founder density is a natural consequence of the random positioning of founding cells in the inoculum. Extending our study to non-isogenic strain pairs of B. subtilis, we show that even for strains with different antagonistic strengths, a race for space remains the dominant mode of competition in biofilms inoculated at low founder densities. Our results highlight the importance of spatial dynamics on competitive interactions within biofilms and hence to related applications.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 884
Author(s):  
Nick Vangheluwe ◽  
Tom Beeckman

Lateral root initiation is a post-embryonic process that requires the specification of a subset of pericycle cells adjacent to the xylem pole in the primary root into lateral root founder cells. The first visible event of lateral root initiation in Arabidopsis is the simultaneous migration of nuclei in neighbouring founder cells. Coinciding cell cycle activation is essential for founder cells in the pericycle to undergo formative divisions, resulting in the development of a lateral root primordium (LRP). The plant signalling molecule, auxin, is a major regulator of lateral root development; the understanding of the molecular mechanisms controlling lateral root initiation has progressed tremendously by the use of the Arabidopsis model and a continual improvement of molecular methodologies. Here, we provide an overview of the visible events, cell cycle regulators, and auxin signalling cascades related to the initiation of a new LRP. Furthermore, we highlight the potential of genome editing technology to analyse gene function in lateral root initiation, which provides an excellent model to answer fundamental developmental questions such as coordinated cell division, growth axis establishment as well as the specification of cell fate and cell polarity.


Development ◽  
2021 ◽  
Author(s):  
Feng Zhao ◽  
Jan Traas

In many species, leaves are initiated at the flanks of shoot meristems. Usually, subsequent growth mainly occurs in the plane of the leaf blade, which leads to the formation of a bifacial leaf with dorso-ventral identities. In a classical set of surgical experiments in potato meristems, Sussex provided evidence that dorsoventrality depends on a signal emanating from the meristem centre. Although these results could be reproduced in tomato, this concept has been debated. We revisited these experiments in Arabidopsis where a range of markers are available to target the precise site of ablation. Using specific markers for organ founder cells and dorsoventral identity, we were unable to perturb the polarity of leaves and sepals long before organ outgrowth. While results in Solanaceae suggested that dorsoventral patterning was unstable during early development, we find that in Arabidopsis the local information contained within and around the primordium is able to withstand major invasive perturbations, long before polarity is fully established.


Cell ◽  
2021 ◽  
Vol 184 (8) ◽  
pp. 1965-1967
Author(s):  
Jing Liu ◽  
Debra L. Silver

Planta ◽  
2021 ◽  
Vol 253 (2) ◽  
Author(s):  
Dorothea Glowa ◽  
Petra Comelli ◽  
John W. Chandler ◽  
Wolfgang Werr

Abstract Main conclusion Inducible lineage analysis and cell ablation via conditional toxin expression in cells expressing the DORNRÖSCHEN-LIKE transcription factor represent an effective and complementary adjunct to conventional methods of functional gene analysis. Abstract Classical methods of functional gene analysis via mutational and expression studies possess inherent limitations, and therefore, the function of a large proportion of transcription factors remains unknown. We have employed two complementary, indirect methods to obtain functional information for the AP2/ERF transcription factor DORNRÖSCHEN-LIKE (DRNL), which is dynamically expressed in flowers and marks lateral organ founder cells. An inducible, two-component Cre–Lox system was used to express beta-glucuronidase GUS in cells expressing DRNL, to perform a sector analysis that reveals lineages of cells that transiently expressed DRNL throughout plant development. In a complementary approach, an inducible system was used to ablate cells expressing DRNL using diphtheria toxin A chain, to visualise the phenotypic consequences. These complementary analyses demonstrate that DRNL functionally marks founder cells of leaves and floral organs. Clonal sectors also included the vasculature of the leaves and petals, implicating a previously unidentified role for DRNL in provasculature development, which was confirmed in cotyledons by closer analysis of drnl mutants. Our findings demonstrate that inducible gene-specific lineage analysis and cell ablation via conditional toxin expression represent an effective and informative adjunct to conventional methods of functional gene analysis.


2021 ◽  
Vol 333 ◽  
pp. 07003
Author(s):  
Kazuki Shirakawa ◽  
Yoshinori Kawabe ◽  
Guan Huang ◽  
Akira Ito ◽  
Masamichi Kamihira

Genetically modified microalgae have been expected to be a useful tool for bioenergy and recombinant protein production. However, random integration of transgene in the microalgae nuclear genome is susceptible to gene silencing of heterologous gene expression. Here, we attempted to perform targeted gene integration into a pre-determined nuclear genomic site of Chlamydomonas reinhardtii using Cre/loxP recombination system for stable transgene expression. We constructed an expression vector plasmid encoding reporter genes (zeocin resistant gene and green fluorescent protein gene; Zeo-2A-GFP) and mutated loxP to generate founder cells. A donor vector encoding IFNα-4 and paromomycin resistant genes flanked by corresponding mutated loxPs was constructed and introduced into founder cells together with a Cre expression vector. The optimal ratio of donor vector to Cre expression vector was determined by counting the number of paromomycin resistant colonies. For the established clones, the targeted integration was confirmed by genomic PCR using various specific primer sets. Target genes in the donor vector could be integrated into the expected genomic site of C. reinhardtii using Cre/loxP system. RT-PCR revealed that IFNα-4 was expressed in five independent transgenic cell lines tested. This result suggests that Cre-based cell engineering is a promising approach to generate smart microalgae expressing foreign genes.


2020 ◽  
Author(s):  
Marcel Rose ◽  
Jakob Bartle-Schultheis ◽  
Katrin Domsch ◽  
Ingolf Reim ◽  
Christoph Schaub

SummaryThe genesis of syncytial muscles is typically considered as a paradigm for an irreversible developmental process. Notably, transdifferentiation of syncytial muscles is naturally occurring during Drosophila development. The ventral longitudinal heart-associated musculature (VLM) arises by a unique mechanism that revokes the differentiated fate from the so-called alary muscles and comprises at least two distinct steps: syncytial muscle cell fragmentation into single myoblasts and direct reprogramming into founder cells of the VLM lineage. Here we provide evidence that the mesodermal master regulator twist plays a key role during this reprogramming process. Acting downstream of Drosophila Tbx1 (Org-1) in the alary muscle lineage, Twist is crucially required for the derepression of the Hippo pathway effector Yki and thus for the initiation of syncytial muscle dedifferentiation and fragmentation. Subsequently, cell-autonomous FGFR-Ras-MAPK signaling in the resulting mono-nucleated myoblasts is maintaining Twist expression, thereby stabilizing nuclear Yki activity and inducing their lineage switch into the founder cells of the VLM.


2020 ◽  
Author(s):  
Marica Catinozzi ◽  
Moushami Mallik ◽  
Marie Frickenhaus ◽  
Marije Been ◽  
Céline Sijlmans ◽  
...  

AbstractThe number of adult myofibers in Drosophila is determined by the number of founder myoblasts selected from a myoblast pool, a process governed by fibroblast growth factor (FGF) signaling. Here, we show that loss of cabeza (caz) function results in a reduced number of adult founder myoblasts, leading to a reduced number and misorientation of adult dorsal abdominal muscles. Genetic experiments revealed that loss of caz function in both adult myoblasts and neurons contributes to caz mutant muscle phenotypes. Selective overexpression of the FGF receptor Htl or the FGF receptor-specific signaling molecule Stumps in adult myoblasts partially rescued caz mutant muscle phenotypes, and Stumps levels were reduced in caz mutant founder myoblasts, indicating FGF pathway deregulation. In both adult myoblasts and neurons, caz mutant muscle phenotypes were mediated by increased expression levels of Xrp1, a DNA-binding protein involved in gene expression regulation. Xrp1-induced phenotypes were dependent on the DNA-binding capacity of its AT-hook motif, and increased Xrp1 levels in founder myoblasts reduced Stumps expression. Thus, control of Xrp1 expression by Caz is required for regulation of Stumps expression in founder myoblasts, resulting in correct founder myoblast selection.Author SummarySkeletal muscles mediate movement, and therefore, proper structure and function of skeletal muscles is required for respiration, locomotion, and posture. Adult muscles arise from fusion of muscle precursor cells during development. In the fruit fly Drosophila melanogaster, muscle precursor cells come in two flavors: founder cells and fusion-competent cells. The number of founder cells selected during development corresponds to the number of adult muscles formed. Here, we report that inactivation of the Drosophila caz gene results in muscle developmental defects. Loss of caz function in both muscle precursor cells and the nerve cells that innervate muscles contributes to the muscle developmental defect. At the molecular level, loss of caz function leads to increased levels of Xrp1. Xrp1 regulates the expression of many other genes, including genes that produce components of the FGF signaling pathway, which is known to be involved in founder cell selection. In all, we uncovered a novel molecular mechanism that regulates founder cell selection during muscle development.


Sign in / Sign up

Export Citation Format

Share Document