scholarly journals The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds

Author(s):  
Nils-Jørgen Knudsen Dal ◽  
Martin Speth ◽  
Kerstin Johann ◽  
Matthias Barz ◽  
Claire Beauvineau ◽  
...  

With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening (HTS) campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models such as mice is time-consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model, to evaluate the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified to possess anti-tuberculosis activity in vitro. To aid solubilization compounds were formulated in biocompatible polymeric micelles (PM). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited to pinpoint promising compounds for further development.

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Xu Cheng ◽  
Jianlong Gao ◽  
Jiaqi Li ◽  
Gang Cheng ◽  
Meijuan Zou ◽  
...  

2020 ◽  
Author(s):  
Miguel O Jara ◽  
Zachary N Warnken ◽  
Robert O Williams

We developed an amorphous solid dispersion (ASD) of the poorly water soluble molecule niclosamide that achieved more than a 2 fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60 fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, BCS class II, and a poor glass former with low bioavailability in vivo. Hot melt extrusion is a high throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer polyvinylpyrrolidone vinyl acetate (PVPVA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using DSC, XRD, NMR, FTIR, and DLS. The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side by side diffusion test, these nanoparticles produced a 4 fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability.


RSC Advances ◽  
2015 ◽  
Vol 5 (99) ◽  
pp. 81728-81738 ◽  
Author(s):  
Rohan D. Deshpande ◽  
Gowda D. V. ◽  
Naga Sravan Kumar Varma Vegesna ◽  
Rudra Vaghela ◽  
Kulkarni P. K.

In the present study, efforts were made to optimize the process parameters of LAS technique for developing GLB NPs, in order to enhance the aqueous solubility as well as oral bioavailability.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chuanjin Wang ◽  
Wei Li

Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI) is a poorly water-soluble diterpenoid compound (C20H28O6) used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH) were used as ORI carrier. ORI was noncovalently encapsulated into (or onto) the functionalized carbon nanotubes (MWCNTs-ORI). The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w).In vitrocytotoxicity assay on MWCNTs-ORI gave IC50of7.29±0.5 μg/mL and ORI-F gave IC50of14.5±1.4 μg/mL. The antitumor effect studiesin vivoshowed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1) was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1) which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.


2021 ◽  
Vol 14 (12) ◽  
pp. 1255
Author(s):  
Ju-Hyun Lee ◽  
Chulhun Park ◽  
Kwon-Yeon Weon ◽  
Chin-Yang Kang ◽  
Beom-Jin Lee ◽  
...  

Itraconazole (ITZ) is a class II drug according to the biopharmaceutical classification system. Its solubility is pH 3-dependent, and it is poorly water-soluble. Its pKa is 3.7, which makes it a weak base drug. The aim of this study was to prepare solid dispersion (SD) pellets to enhance the release of ITZ into the gastrointestinal environment using hot-melt extrusion (HME) technology and a pelletizer. The pellets were then filled into capsules and evaluated in vitro and in vivo. The ITZ changed from a crystalline state to an amorphous state during the HME process, as determined using DSC and PXRD. In addition, its release into the gastrointestinal tract was enhanced, as was the level of ITZ recrystallization, which was lower than the marketed drug (Sporanox®), as assessed using an in vitro method. In the in vivo study that was carried out in rats, the AUC0–48h of the commercial formulation, Sporanox®, was 1073.9 ± 314.7 ng·h·mL−1, and the bioavailability of the SD pellet (2969.7 ± 720.6 ng·h·mL−1) was three-fold higher than that of Sporanox® (*** p < 0.001). The results of the in vivo test in beagle dogs revealed that the AUC0–24h of the SD-1 pellet (which was designed to enhance drug release into gastric fluids) was 3.37 ± 3.28 μg·h·mL−1 and that of the SD-2 pellet (which was designed to enhance drug release in intestinal fluids) was 7.50 ± 4.50 μg·h·mL−1. The AUC of the SD-2 pellet was 2.2 times higher than that of the SD-1 pellet. Based on pharmacokinetic data, ITZ would exist in a supersaturated state in the area of drug absorption. These results indicated that the absorption area is critical for improving the bioavailability of ITZ. Consequently, the bioavailability of ITZ could be improved by inhibiting precipitation in the absorption area.


Sign in / Sign up

Export Citation Format

Share Document