amorphous solid dispersion
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 119)

H-INDEX

27
(FIVE YEARS 6)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2059
Author(s):  
Deanna M. Mudie ◽  
Aaron M. Stewart ◽  
Jesus A. Rosales ◽  
Molly S. Adam ◽  
Michael M. Morgen ◽  
...  

The authors wish to make the following corrections to this paper [...]


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1682
Author(s):  
Raman Iyer ◽  
Vesna Petrovska Petrovska Jovanovska ◽  
Katja Berginc ◽  
Miha Jaklič ◽  
Flavio Fabiani ◽  
...  

Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Amrita K. Cheema ◽  
Yaoxiang Li ◽  
Jatinder Singh ◽  
Ryan Johnson ◽  
Michael Girgis ◽  
...  

Abstract Background The mammalian gut harbors very complex and diverse microbiota that play an important role in intestinal homeostasis and host health. Exposure to radiation results in dysbiosis of the gut microbiota leading to detrimental pathophysiological changes to the host. To alleviate the effects of irradiation, several candidate countermeasures are under investigation. BIO 300, containing synthetic genistein formulated as an amorphous solid dispersion or as an aqueous suspension of nanoparticles, is a promising candidate under advanced development. The aim of this study was to investigate the effects of BIO 300 on the gut microbiome and metabolome of mice exposed to 60Co gamma-radiation. The gut microbiota and metabolome of control and drug-treated mice exposed to radiation was characterized by bacterial 16S rRNA amplicon sequencing and untargeted metabolomics. Results We found that irradiation altered the Firmicutes/Bacteroidetes ratio and significantly decreased the relative abundance of Lactobacillus, both in BIO 300-treated and control mice; however, the ratio returned to near normal levels in BIO 300-treated mice by day 14 post-irradiation. Concomitantly, we also observed corrective shifts in metabolic pathways that were perturbed after irradiation. Conclusions Overall, the data presented show that radiation exposure led to a relative depletion of commensals like Lactobacillus leading to an inflammatory metabolic phenotype while the majority of the drug-treated mice showed alleviation of this condition primarily by restoration of normal gut microbiota. These results indicate that the radioprotective effects of BIO 300, at least in part, may involve correction of the host-microbiome metabolic axis.


2021 ◽  
Vol 901 ◽  
pp. 35-39
Author(s):  
Sukannika Tubtimsri ◽  
Yotsanan Weerapol

The amorphous solid dispersions (ASDs) containing amino methacrylate copolymer and surface-active agents were prepared to improve the nifedipine (NDP) dissolution. The different types of surface-active agent i.e., polysorbates 80, sodium lauryl sulfate (SLS) and polyethylene glycol (PEG) 400 were used. In order to evaluate the ASDs formulation,powder X-ray diffractometry and thermal analysis to characterize NDP crystallinity in ASDs and the dissolution study of NDP have been performed to compare the dissolution profiles. The ASDs were kept for 6 months to investigate the stability. In the X-ray diffraction pattern, no peak was observed in all samples of ASDs. No peak was found in sample of all ASDs from the thermograms. These results suggest that the drug may be molecularly dispersed in matrix of amino methacrylate copolymer. The drug dissolution at 120 min, from ASDs without surface-active agent and NDP powder were 58.31% and 17.95%, respectively. The dissolved NDP from ASDs composed of SLS, polysorbate 80 and PEG400 were 96.25%, 88.86% and 75.32%, respectively. These results may occur due to the reduction of surface tension, the addition of the low amount of high efficiency of surface-active agent e.g., SLS (compared with PEG400 and polysorbate 80) provided the higher NDP dissolution. The content analysis of NDP in selected ASDs was studied at the end of 3 and 6 months, the NDP content remained unchanged after storage.


Author(s):  
Mohammad Atif Faiz Afzal ◽  
Kristin Lehmkemper ◽  
Ekaterina Sobich ◽  
Thomas F. Hughes ◽  
David J. Giesen ◽  
...  

Folia Medica ◽  
2021 ◽  
Vol 63 (4) ◽  
pp. 557-568
Author(s):  
Vaishali P. Patel ◽  
Anita P. Patel ◽  
Ashish Shah

Febuxostat is a selective inhibitor of xanthine oxidase and belongs to BCS class II drugs having low solubility and high permeability. Solubility is the most important parameter which directly affects dissolution, absorption and bioavailability of the drugs. There are different techniques by which we can improve solubility and dissolution rate of poorly soluble drug. Amorphous solid dispersion is one of the methods which can improve solubility as well as powder characteristics. The aim of the present study was to formulate and optimize various methods of formulating solid dispersion by using various drug-to-polymer ratios and identifying the batch which gives higher solubility as well as amorphous powder of the drug febuxostat. Different techniques like hot melt method, solvent evaporation method and spray drying techniques were selected for optimization. Attempts were made to improve solubility of febuxostat by employing Kolliphor P 188, Kolliphor P 237, Eudragit RLPO in different drug-to-polymer ratios (1:1, 1:1.5, 1:2) as carrier. The prepared solid dispersion was characterized for the saturation solubility, percentage yield, using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), powdered X-ray diffraction studies (PXRD), and residual solvent determination. Solid state characterization indicated that febuxostat was present in the amorphous form after mixing with polymeric carrier. In contrast to the pure form of drug, solid dispersion of the drug showed better solubility and amorphous characteristics which can be attributed to decreased crystallinity due to hydrotrophy. Thus, amorphous solid dispersion approach can be used successfully to enhance solubility, dissolution rate and bioavailability of febuxostat.


Sign in / Sign up

Export Citation Format

Share Document