scholarly journals Glycodelin-A interacts with fucosyltransferase on human sperm plasma membrane to inhibit spermatozoa-zona pellucida binding

2006 ◽  
Vol 120 (1) ◽  
pp. 33-44 ◽  
Author(s):  
P. C. N. Chiu ◽  
M.-K. Chung ◽  
R. Koistinen ◽  
H. Koistinen ◽  
M. Seppala ◽  
...  
1996 ◽  
Vol 270 (6) ◽  
pp. C1709-C1714 ◽  
Author(s):  
C. Foresta ◽  
M. Rossato ◽  
P. Chiozzi ◽  
F. Di Virgilio

We have identified the mechanism whereby extracellular ATP (ATPe) triggers the acrosome reaction in human spermatozoa. This nucleotide opens a ligand-gated ion channel expressed on the sperm plasma membrane. ATPe threshold and 50% effective concentration calculated on the total added ATPe are 0.1 and 2 mM, respectively, corresponding to a free ATP concentration (ATP4-) of 3 and 200 microM, respectively. The ATPe-gated channel is selective for monovalent cations (Na+, choline, and methylglucamine), whereas on the contrary, permeability to Ca2+ is negligible. Isosmolar replacement of extracellular Na+ with sucrose fully blocked ATPe-dependent sperm activation, thus suggesting a mandatory role for Na+ influx. These results show that human sperm express an ATPe-gated Na+ channel that might have an important role in sperm activation before egg fertilization.


1987 ◽  
Vol 243 (2) ◽  
pp. 339-346 ◽  
Author(s):  
S. R. Mack ◽  
L. J. D. Zaneveld ◽  
R. N. Peterson ◽  
W. Hunt ◽  
L. D. Russell

1986 ◽  
Vol 14 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Gary R. Poirier ◽  
Roderick Robinson ◽  
Richard Richardson ◽  
Kathy Hinds ◽  
Deborah Clayton

1981 ◽  
Vol 84 (1) ◽  
pp. 144-156 ◽  
Author(s):  
R.N. Peterson ◽  
L.D. Russell ◽  
D. Bundman ◽  
M. Conway ◽  
M. Freund

Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 497-508 ◽  
Author(s):  
Rachel Gibbons ◽  
Susan A Adeoya-Osiguwa ◽  
Lynn R Fraser

Capacitation is a pivotal event for mammalian spermatozoa, involving the loss of surface proteins known as decapacitation factors (DF) and consequent acquisition of fertilizing ability. Earlier studies showed that a mouse sperm DF binds to a receptor, DF-R, whose attachment to the sperm plasma membrane appears to involve a glycosylphosphatidylinositol (GPI) anchor. In the present study, purification and subsequent sequencing of DF-R has identified this ~23 kDa protein as phosphatidyletha-nolamine-binding protein 1 (PEBP 1). To obtain functional evidence that supports sequence homology data, purified recombinant PEBP 1 and PEBP 2 were evaluated for biological activity. While PEBP 1 was able to remove DF activity in solution at concentrations above ~1 nmol/l, PEBP 2 was ineffective, even at 600 nmol/l; this confirmed that DF-R is PEBP 1. Anti-PEBP 1 antiserum recognized recombinant PEBP 1 and a ~23 kDa protein in both mouse and human sperm lysates. Immunolocalization studies revealed that DF-R/PEBP 1 is located on the acrosomal cap, the post-acrosomal region and the flagellum of both mouse and human spermatozoa, with epitope accessibility being capacitation state-dependent and reversible. Treatment of cells with a phospholipase able to cleave GPI anchors essentially abolished immunostaining, thus confirming the extracellular location of DF-R/PEBP 1. We suggest that DF-R/PEBP 1 plays its fundamental role in capacitation by causing alterations in the sperm plasma membrane in both head and flagellum, with functional consequences for membrane-associated proteins. Obtaining more detail about DF ↔ DF-R interactions could lead to useful applications in both fertility treatments and new contraceptive approaches.


Reproduction ◽  
2019 ◽  
Vol 157 (5) ◽  
pp. R181-R197 ◽  
Author(s):  
Bart Leemans ◽  
Tom A E Stout ◽  
Catharina De Schauwer ◽  
Sonia Heras ◽  
Hilde Nelis ◽  
...  

In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.


Author(s):  
Soren Naaby-Hansen ◽  
Alan Diekman ◽  
Jagathpala Shetty ◽  
Charles J Flickinger ◽  
Anne Westbrook ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document