scholarly journals Update on mammalian sperm capacitation: how much does the horse differ from other species?

Reproduction ◽  
2019 ◽  
Vol 157 (5) ◽  
pp. R181-R197 ◽  
Author(s):  
Bart Leemans ◽  
Tom A E Stout ◽  
Catharina De Schauwer ◽  
Sonia Heras ◽  
Hilde Nelis ◽  
...  

In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.

2001 ◽  
Vol 114 (19) ◽  
pp. 3543-3555 ◽  
Author(s):  
Frits M. Flesch ◽  
Jos F. H. M. Brouwers ◽  
Patricia F. E. M. Nievelstein ◽  
Arie J. Verkleij ◽  
Lambert M. G. van Golde ◽  
...  

Mammalian sperm cells are activated prior to fertilization by high bicarbonate levels, which facilitate lipoprotein-mediated cholesterol efflux. The role of bicarbonate and cholesterol acceptors on the cholesterol organization in the sperm plasma membrane was tested. Bicarbonate induced an albumin-independent change in lipid architecture that was detectable by an increase in merocyanine staining (due to protein kinase A-mediated phospholipid scrambling). The response was limited to a subpopulation of viable sperm cells that were sorted from the non-responding subpopulation by flow cytometry. The responding cells had reduced cholesterol levels (30% reduction) compared with non-responding cells. The subpopulation differences were caused by variable efficiencies in epididymal maturation as judged by cell morphology. Membrane cholesterol organization was observed with filipin, which labeled the entire sperm surface of non-stimulated and non-responding cells, but labeled only the apical surface area of bicarbonate-responding cells. Addition of albumin caused cholesterol efflux, but only in bicarbonate-responding cells that exhibited virtually no filipin labeling in the sperm head area. Albumin had no effect on other lipid components, and no affinity for cholesterol in the absence of bicarbonate. Therefore, bicarbonate induces first a lateral redistribution in the low cholesterol containing spermatozoa, which in turn facilitates cholesterol extraction by albumin. A model is proposed in which phospholipid scrambling induces the formation of an apical membrane raft in the sperm head surface that enables albumin mediated efflux of cholesterol.


2021 ◽  
Vol 22 (6) ◽  
pp. 3276
Author(s):  
Carla Moros-Nicolás ◽  
Pascale Chevret ◽  
María Jiménez-Movilla ◽  
Blanca Algarra ◽  
Paula Cots-Rodríguez ◽  
...  

Mammalian oocytes are surrounded by an extracellular coat called the zona pellucida (ZP), which, from an evolutionary point of view, is the most ancient of the coats that envelope vertebrate oocytes and conceptuses. This matrix separates the oocyte from cumulus cells and is responsible for species-specific recognition between gametes, preventing polyspermy and protecting the preimplantation embryo. The ZP is a dynamic structure that shows different properties before and after fertilization. Until very recently, mammalian ZP was believed to be composed of only three glycoproteins, ZP1, ZP2 and ZP3, as first described in mouse. However, studies have revealed that this composition is not necessarily applicable to other mammals. Such differences can be explained by an analysis of the molecular evolution of the ZP gene family, during which ZP genes have suffered pseudogenization and duplication events that have resulted in differing models of ZP protein composition. The many discoveries made in recent years related to ZP composition and evolution suggest that a compilation would be useful. Moreover, this review analyses ZP biosynthesis, the role of each ZP protein in different mammalian species and how these proteins may interact among themselves and with other proteins present in the oviductal lumen.


1994 ◽  
Vol 107 (8) ◽  
pp. 2151-2163 ◽  
Author(s):  
B.M. Gadella ◽  
T.W. Gadella ◽  
B. Colenbrander ◽  
L.M. van Golde ◽  
M. Lopes-Cardozo

Seminolipid (sulphogalactosylalkylacylglycerol), the glycolipid that is specific for mammalian germ cells, is located exclusively in the outer leaflet of the sperm plasma membrane. In this study the lateral distribution of seminolipid on sperm heads has been investigated by indirect immunofluorescence labelling and detection with digital imaging fluorescence microscopy. In freshly ejaculated sperm cells this glycolipid was present primarily at the apical ridge subdomain of the plasma membrane of the sperm head. After binding the sperm cells to zona-coated coverslips seminolipid migrated, in 40 minutes, from the apical ridge to the equatorial subdomain of the plasma membrane. A similar redistribution of seminolipid was observed during capacitation of sperm cells in vitro induced by Ca2+ or bovine serum albumin. Comparable migration of seminolipid was also found after prolonged storage of ejaculated sperm cells, albeit at a much slower rate. Addition of arylsulphatase A, an enzyme present in seminal plasma that desulphates seminolipid, significantly enhanced the migration of seminolipid during storage of sperm cells. Its breakdown product desulphoseminolipid (galactosylalkylacylglycerol) appeared highly specifically at the equatorial segment. The measured fluorescence intensity over the sperm head surface correlated linearly with the spatial probe distribution as was checked by fluorescence lifetime imaging microscopy. This paper demonstrates and quantifies for the first time the polarity of seminolipid on the surface of the sperm cell and the dynamic alterations that occur in this polarity during post-ejaculatory events.


Zygote ◽  
2000 ◽  
Vol 8 (4) ◽  
pp. 329-338 ◽  
Author(s):  
D.K. Saxena ◽  
I. Tanii ◽  
T. Oh-oka ◽  
K. Yoshinaga ◽  
K. Toshimori

In this study we examined the behaviour and role of an intra-acrosomal antigenic molecule, acrin 3, during mouse fertilisation in vitro by assessing the effect of its pertinent monoclonal antibody mMC101. Experiments were designed to assess the effect of mMC101 on sperm–zona pellucida binding, the acrosome reaction, zona pellucida penetration, sperm–egg fusion, and fertilisation in vitro. mMC101 did not affect sperm motility or primary and secondary binding to the zona pellucida, but significantly inhibited fertilisation of zona-pellucida-intact oocytes in a dose-dependent manner. In the presence of mMC101 at 100 μg/ml concentration in TYH medium, none of the oocytes developed to pronuclear stage by 5 h after co-incubation of the gametes, but the pronucleus formation rate recovered to some extent (45.3%) after 8 h, indicating a delay of early embryonic development. mMC101 also delayed and significantly suppressed zona pellucida penetration by sperm. Acrin 3 dispersed and did not remain on completely acrosome-reacted sperm. Although mMC101 did not influence the zona-pellucida-induced acrosome reaction, it significantly inhibited fertilisation when acrosome-reacted sperm in the presence of mMC101 inseminated zona-pellucida-free oocytes. However, fertilisation remained unaffected when acrosome-reacted sperm in the absence of mMC101 inseminated zona-pellucida-free oocytes even in its presence. Thus, acrin 3 appears to facilitate zona pellucida penetration and is also likely to be involved in sperm–oocyte fusion by modifying the sperm plasma membrane during the acrosome reaction.


Reproduction ◽  
2000 ◽  
pp. 127-135 ◽  
Author(s):  
W Bone ◽  
NG Jones ◽  
G Kamp ◽  
CH Yeung ◽  
TG Cooper

The effects of the male antifertility agent ornidazole on glycolysis as a prerequisite for fertilization were investigated in rats. Antifertility doses of ornidazole inhibited glycolysis within mature spermatozoa as determined from the lack of glucose utilization, reduced acidosis under anaerobic conditions and reduced glycolytic enzyme activity. As a consequence, cauda epididymidal spermatozoa from ornidazole-fed rats were unable to fertilize rat oocytes in vitro, with or without cumulus cells, which was not due to transfer of an inhibitor in epididymal fluid with the spermatozoa. Under IVF conditions, binding to the zona pellucida was reduced in spermatozoa from ornidazole-fed males and the spermatozoa did not undergo a change in swimming pattern, which was observed in controls. The block to fertilization could be explained by the disruption of glycolysis-dependent events, since reduced binding to the zona pellucida and a lack of kinematic changes were demonstrated by control spermatozoa in glucose-free media in the presence of respiratory substrates. The importance of glycolysis for binding to, and penetration of, the zona pellucida, and hyperactivation in rats is discussed in relation to the glycolytic production of ATP in the principal piece in which local deprivation of energy may explain the reduced force of spermatozoa from ornidazole-fed males.


Author(s):  
Valeria Merico ◽  
Silvia Garagna ◽  
Maurizio Zuccotti

The presence of cumulus cells (CCs) surrounding ovulated eggs is beneficial to in vitro fertilization and preimplantation development outcomes in several mammalian species. In the mouse, this contribution has a negligible effect on the fertilization rate; however, it is not yet clear whether it has positive effects on preimplantation development. Here, we compared the rates of in vitro fertilization and preimplantation development of ovulated B6C3F1 CC-enclosed vs. CC-free eggs, the latter obtained either after a 5 min treatment in M2 medium containing hyaluronidase or after 5–25 min in M2 medium supplemented with 34.2 mM EDTA (M2-EDTA). We found that, although the maintenance of CCs around ovulated eggs does not increment their developmental rate to blastocyst, the quality of the latter is significantly enhanced. Most importantly, for the first time, we describe a further quantitative and qualitative improvement, on preimplantation development, when CC-enclosed eggs are isolated from the oviducts in M2-EDTA and left in this medium for a total of 5 min prior to sperm insemination. Altogether, our results establish an important advancement in mouse IVF procedures that would be now interesting to test on other mammalian species.


Zygote ◽  
2000 ◽  
Vol 8 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Michael B. Dinkins ◽  
Benjamin G. Brackett

Efforts to achieve complete chemical definition of media used for in vitro capacitation of bovine spermatozoa including removal of heparin purified from porcine intestinal mucosa are presented. Fluorescent staining with chlortetracycline (CTC), known to reflect changes coincident with sperm capacitation in certain species, was studied following treatments of frozen-thawed bull spermatozoa with β-cyclodextrins, dibutyryl cAMP (dbcAMP) and progesterone in comparison with heparin. The CTC staining patterns (F, B and AR) were confirmed to correlate with known conditions that effectively prepare cryopreserved bull spermatozoa for fertilisation in vitro. In the absence of glucose, the routinely employed heparin-containing capacitating medium caused an increase in spermatozoa displaying the AR pattern. Both progesterone (100 μM) and dbcAMP (0.01–0.1 mM) were able to increase the proportion of B pattern stained sperm cells more than after exposure to control (mDM) conditions without a significant reduction in motility. Exposure to either dbcAMP or β-cyclodextrins was accompanied by an increase in proportions of spermatozoa displaying the AR pattern over those seen in controls. Exposure to β-cyclodextrins did not increase the proportion of B pattern stained spermatozoa. Comparison of spermatozoa from two bulls revealed differential responses of spermatozoa from different males to treatments with heparin and progesterone. In vitro fertilisation results demonstrated that previously cryopreserved bull spermatozoa could be capacitated in chemically defined conditions devoid of heparin or other biological components.


2006 ◽  
Vol 120 (1) ◽  
pp. 33-44 ◽  
Author(s):  
P. C. N. Chiu ◽  
M.-K. Chung ◽  
R. Koistinen ◽  
H. Koistinen ◽  
M. Seppala ◽  
...  

2021 ◽  
Author(s):  
Sarah Herberg ◽  
Yoshitaka Fujihara ◽  
Andreas Blaha ◽  
Karin Panser ◽  
Kiyonari Kobayashi ◽  
...  

Fertilization is the fundamental process that initiates the development of a new individual in all sexually reproducing species. Despite its importance, our understanding of the molecular players that govern mammalian sperm-egg interaction is incomplete, partly because many of the essential factors found in non-mammalian species do not have obvious mammalian homologs. We have recently identified the Ly6/uPAR protein Bouncer as a new, essential fertilization factor in zebrafish (Herberg et al., 2018). Here, we show that Bouncer's homolog in mammals, SPACA4, is also required for efficient fertilization in mice. In contrast to fish, where Bouncer is expressed specifically in the egg, SPACA4 is expressed exclusively in the testis. Male knockout mice are severely sub-fertile, and sperm lacking SPACA4 fail to fertilize wild-type eggs in vitro. Interestingly, removal of the zona pellucida rescues the fertilization defect of Spaca4-deficient sperm in vitro, indicating that SPACA4 is not required for the interaction of sperm and the oolemma but rather of sperm and zona pellucida. Our work identifies SPACA4 as an important sperm protein necessary for zona pellucida penetration during mammalian fertilization.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 141-149 ◽  
Author(s):  
S. Mortillo ◽  
P.M. Wassarman

Egg zona pellucida glycoproteins mZP3 and mZP2 serve as primary and secondary sperm receptors, respectively, during initial stages of fertilization in mice [Wassarman (1988) A. Rev. Biochem. 57, 415–442]. These receptors interact with complementary egg-binding proteins (EBPs) located on the sperm surface to support species-specific gamete adhesion. Results of whole-mount autoradiographic experiments suggest that purified egg mZP3 and mZP2 bind preferentially to acrosome-intact (AI) and acrosome-reacted (AR) sperm heads, respectively [Bleil and Wassarman (1986) J. Cell Biol. 102, 1363–1371]. Here, we used purified egg mZP2, egg mZP3 and fetuin, which were coupled directly to colloidal gold (‘gold-probes’), to examine binding of these glycoproteins to membrane compartments of AI and AR sperm by transmission electron microscopy. mZP3 gold-probes were found associated primarily with plasma membrane overlying the acrosomal and post-acrosomal regions of AI sperm heads. They were also found associated with plasma membrane overlying the post-acrosomal region of AR sperm heads. mZP2 gold-probes were found associated primarily with inner acrosomal membrane of AR sperm heads, although some gold was associated with outer acrosomal membrane of AI sperm that had holes in plasma membrane overlying the acrosome. Fetuin gold-probes, used to assess background levels of binding, were bound at relatively low levels to plasma membrane and inner acrosomal membrane of AI and AR sperm, respectively. None of the gold-probes exhibited significant binding to sperm tails, or to red blood cells and residual bodies present in sperm preparations. These results provide further evidence that mZP2 and mZP3 bind preferentially to heads of AR and AI sperm, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document